https://pakjmcr.com/index.php/1/about

Online ISSN

Print ISSN

Gulzaib et al - 2025

3007-2387

3007-2379

Forensic botany in investigations

Ujala Gulzaib

Department of Biomedical Engineering and Sciences (BMES), School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology, Pakistan

Nosheen Naseem

Department of Eastern Medicine, Faculty of Medical Sciences, Government Collage University Faisalabad Pakistan

Naheed Mumtaz

Department of Eastern Medicine, Faculty of Medical and Health Sciences, University of Poonch Rawalakot Pakistan

Fahad Said khan

Department of Eastern Medicine, Faculty of Medical and Health Sciences, University of Poonch Rawalakot Pakistan

Shamaila Kausar

Department of Microbiology, University of Lahore, Pakistan

Muhammad Akram

Department of Eastern Medicine, Faculty of Medical Sciences, Government Collage University Faisalabad Pakistan Corresponding Author Email: muhammadakram@gcuf.edu.pk

Momina Iftikhar

Department of Eastern Medicine, Faculty of Medical Sciences, Government Collage University Faisalabad Pakistan

Author Details

Keywords:

Plant identification, plant material analysis, botanical evidence, forensic botany, and forensic science

Received on 25 June 2025

Accepted on 29 July 2025

Published on 03 Aug 2025

Corresponding

E-mails

&

Authors*:muhammadakram@gcuf.edu.pk

Abstract

The aim of this study is to highlight the use of forensic botany in criminal investigations. It involves identifying and analyzing plants and botanical materials to determine the time, place, and circumstances of a crime. This research will help law enforcement agencies collect evidence and investigate crimes more effectively. Underfield, known as "forensic botany," uses vegetable methods and concepts in legal procedures. To provide important information that can support criminal investigations, the sector analyzes plant. Forensic botanists use a variety of approaches to identify plant species and determine their origin. These techniques include creating chemical profiles, DNA analysis, and microscopy. By examining evidence within the system, forensic botanists can develop, validate, validate, or

counter geographical and environmental payments. A combination of accepted and specific regions. By including forensic botany in your research project, you have a complete understanding of legal procedures and plant science. Forensic botanists often work closely with

https://pakjmcr.com/index.php/1/about

Online ISSN

Print ISSN

Gulzaib et al - 2025

3007-2387

3007-2379

law enforcement, investigators, and legal experts to assess evidence of the system in the context of the entire study. In situations involving missing people, murder, arson and environmental crime, their conclusions are very important. Regardless of its promise, forensic botany must overcome obstacles such as the requirements for detailed plant knowledge as a result of environmental impacts and deviations in the evidence of the system. Technical and methodological developments improve the accuracy and applicability of forensic analysis of systems. It provides valuable knowledge to support legal research in the process .

INTRODUCTION

Forensic botany is an important field that is based on the analysis of plants and botanical materials in criminal investigations. This knowledge can be used to determine the location, time, and circumstances of a crime. Forensic botany provides investigators with evidence that cannot be obtained through other methods, making it possible to deliver justice. The historical background of forensic botany spans centuries, when in the early days plants were used indirectly to solve crimes. Over time, scientific advances have further improved the use of botanical analysis as legal evidence. The twentieth century saw significant advances in the field thanks to the development of microscopy and DNA techniques. Today, forensic botany plays an important role in investigations. By combining traces with plant pieces like pollen, seeds, and leaves, forensic investigators can identify a person or thing in a specific location. A few of these include Vaviloy and his colleagues (1992) conducted extensive research on the genetic diversity of plants. They identified centers of plant diversity around the world and suggested ways to ensure their survival. Macroscopic plant evidence under forensic botany in investigations includes large parts of plants such as leaves, branches, flowers, fruits and pieces of wood. This evidence helps in establishing a connection between the crime scene and the suspect. They are examined by identifying their appearance, texture and species, which makes the investigation effective. Microscopic plant evidence in forensic botany includes pollen, cells, trichomes, tiny seed particles, and fine plant tissue. This evidence is identified through microscopic examination and helps to establish the location, time, and presence of the suspect in a crime. This evidence often corroborates other evidence. Pollen and spore analysis is very important in forensic botany in investigations. Pollen and spores are associated with specific plants and areas, so they help in establishing a connection between the crime scene and the suspect. They are examined microscopically to determine the area. This method makes the investigation robust and reliable. The investigation uses dendrochronology, a branch of forensic

https://pakjmcr.com/index.php/1/about

Online ISSN

Print ISSN

Gulzaib et al - 2025

3007-2387

3007-2379

botany, to analyze tree rings. This method determines the age of a tree, its climatic conditions, and its growth at a particular time. This information helps to confirm the time and place of the crime. Tree ring analysis also strengthens environmental evidence. Collection and preservation of botanical evidence is a very important step in forensic botany investigations. Plant components such as leaves, seeds, pollen, and wood are carefully collected so that their structure is not damaged. They are stored in clean, dry, and labeled bags or containers to ensure accurate results during analysis. Their research played a significant role in agricultural research and grain production and laid the foundation for modern plant science. Jadhav and colleagues (2022) in their research emphasized the use of botanical evidence in crime investigation. They explained the importance of identifying plant particles with the help of modern techniques such as DNA barcoding and microscopic analysis. Their research paved new paths in the field of forensic botany. Coyle and colleagues (2001) emphasized the importance of incorporating botanical evidence analysis into crime investigation in their research. They described methods for identifying plant fragments, seeds, and pollen samples, which help establish a link between a criminal and a crime scene. Their work proved to be very effective. Neal and colleagues (2006) explored the use of plant DNA markers in forensic science. They reported that plant fragments could be linked to a criminal or a crime scene through genetic identification. Their research laid the foundation for modern genetic techniques in forensic botany and strengthened the investigative process. Because plants are widespread and can exhibit a variety of characteristics depending on the situation, this type of evidence is frequently helpful in crime scene investigations. Forensic botany uses a variety of techniques and methods in its investigation. These include morphological analysis, microscopy, DNA barcoding, dendrochronology (tree ring analysis), and pollen and spore examination. These methods help in the identification and analysis of botanical evidence, which can be used to establish the location, time, and relationship of the suspect to the crime scene. Forensic botany plays an effective role in the investigation of a crime scene by linking the suspect to the crime scene. Plant particles such as pollen, seeds, or leaves are found on the suspect's clothes, shoes, or vehicle, which provide evidence of his presence. Analysis of this evidence helps in establishing a connection between the crime scene and the suspect. There are many famous case studies and examples of forensic botany in which plant evidence played a significant role in the investigation. In some cases, the killer was identified through pollen or seeds, while in others, the actual crime scene was determined through the analysis of trees and plants. These cases proved that botanical evidence is admissible and decisive in court. Forensic botany faces several challenges and limitations in its

https://pakjmcr.com/index.php/1/about

Online ISSN

Print ISSN

Gulzaib et al - 2025

3007-2387

3007-2379

investigation. Plant evidence is often fragile and prone to contamination, making accurate analysis difficult. Sometimes a shortage of experts is also a problem. In addition, advanced techniques require expensive equipment, which is not available in every laboratory, which can affect investigations. Forensic botany has a bright future in investigations and is constantly evolving. The use of modern DNA technology, barcoding, and bioinformatics is making the identification of plant evidence more accurate and faster. With the availability of trained experts and the help of new equipment, this field will play a more effective role in crime investigation. Field sampling techniques under forensic botany are very important in investigations. In this, plant components such as leaves, branches, seeds, pollen and soil samples are carefully collected from the crime scene. Gloves and sterile tools are used to protect the samples from contamination. Each sample is properly labeled to facilitate analysis. Laboratory analysis methods under forensic botany are of great importance in investigations. These include microscopic examination, DNA barcoding, chemical analysis and morphological identification. Plant components such as pollen, seeds, leaves and wood fragments are examined in the laboratory with the help of modern equipment to prove the connection between the crime scene and the suspect. Forensic botany is a cutting-edge field of investigation that uses DNA barcoding and molecular tools. These methods allow for the accurate identification of plant species, no matter how small or damaged the sample. This technique helps in establishing a connection between a crime scene and a suspect in court as strong evidence. Forensic botany is an important tool in criminal investigations. It analyzes plant components such as pollen, seeds, leaves, and wood to determine the location, time, and presence of a suspect in a crime. It provides strong evidence in cases of murder, kidnapping, land disputes, and other crimes that are admissible in court. Forensic botany is also helpful in determining the time of death in investigations. Plant growth, wilting, the presence of pollen, or insect activity on plants can indicate how long a body has been there. This information helps the police and the court determine the exact time of death, which is very important for the investigation. Forensic botany plays an important role in crime scene identification in investigations. Plant components such as pollen, seeds or leaves, when found on the clothes or belongings of the accused, prove that he was present at a particular place. The identification of specific plants helps the police to trace the area, which helps them to reach the actual scene of the crime. Forensic botany is an important field that uses plants and botanical evidence in the investigation of crimes. It involves the identification and analysis of plant parts, seeds, pollen, and wood, etc. to help identify the place, time, and perpetrator of a crime. Its scope is very broad. Dawson and colleagues (2015)

https://pakjmcr.com/index.php/1/about

Online ISSN

Print ISSN

Gulzaib et al - 2025

3007-2387

3007-2379

highlighted modern methods of forensic botany in their research. They emphasized the use of plant microscopic and DNA analysis techniques in crime investigations to increase the accuracy of evidence. Their research introduced new methods that were helpful in determining the place, time, and circumstances of a crime. Understanding plant traces is important for forensic scientists because even small plant particles can provide important clues in criminal investigations. Knowledge of leaves, pollen, seeds, or roots can help link suspects to crime scenes, determine time, and understand the sequence of events. Properly collecting, preserving, and analyzing plant evidence requires specialized skills. It is essential that the evidence clearly links the victim or suspect to the incident or relevant location. If plant particles or plant material are found on a person's clothes, shoes or belongings, it can confirm the location or time of the crime. Such concrete evidence helps prove guilt in court. In 2023, Kasperczyk and colleagues (2012) Schiller and colleagues made important contributions to the field of forensic botany with their research. They further refined the techniques for using plant particles, especially pollen and spores, as effective evidence in criminal investigations. Their research strengthened the credibility of botanical evidence and its legal status in court. Numerous attempts have been made to employ molecular technology in forensic investigations, mostly in the fields of gardening and agriculture. El and associates (2018). However, DNA testing for individual plants is more difficult than for humans, who can identify all individuals except human chimeras. Schall and colleagues (1998) emphasized the importance of genetic analysis in forensic botany in their research. They introduced techniques for strengthening evidence in various cases using plant DNA. Their research paved new ways in proving the connection between suspects and crime scenes through plant material. It is difficult to describe a single plant because plants are very complex in terms of their structure, species, genetic diversity, and environment. Its leaves, flowers, seeds, and roots play an important role in identifying each plant. In addition, seasonal changes and location also affect the characteristics of the plant. The most difficult aspect of plant identification in forensic medicine is that sometimes it becomes difficult to make a correct identification due to the similarity of different species. Nevertheless, botanists can accurately identify them with the help of minor differences and genetic analysis, which helps in connecting the identity of the perpetrator or victim in a crime investigation. IDs can be checked in a variety of ways. Some are more than a century old, some have been made recently. Normally there are no individual plants, but DNA analysis allows fragments to be connected to the same species. Briggs and colleagues (2016) emphasized the use of modern technologies in forensic botany, such as DNA sequencing and microscopic techniques, in their research. They described methods for

https://pakjmcr.com/index.php/1/about

Online ISSN

Print ISSN

Gulzaib et al - 2025

3007-2387

3007-2379

linking plant evidence from a crime scene to a suspect. Their research further highlighted the importance of botanical evidence in criminal investigations. Illustration shows tree branches of a crime car. The DNA of the branches can be combined with trees that grow at crime scenes but cannot directly connect to specific locations in the tree. Smoleniak and colleagues (2004) highlighted the use of forensic botany and genetic techniques in their research. They demonstrated through various case studies how plant DNA analysis can be helpful in criminal investigations. Their research further solidified the importance of modern genetic methods in forensic science. Nevertheless, most of the species investigated so far do not have sufficient genetic diversity to identify a single person among individuals. Chemistry or biochemical analysis can also help identify systems. Sharma and colleagues (2008) highlighted the utility of using genetic and microscopic analysis of plants in forensic investigations. They explained how plant fragments, seeds, and pollen evidence can be helpful in proving the presence of a criminal. Their work laid the foundation for the use of modern techniques in crime investigation. Biochemical standards can also be used to identify and quantitatively identify active ingredients in medicinal plants, such as opium and marijuana ingredients. It is important to maintain the type of bioactive ingredient in plant samples to support separation and identification. A sample containing liquid nitrogen is the best step. Proper supply of liquid nitrogen is abnormal and alternative methods must be used to maintain system samples. Cruz and colleagues (2013) presented innovative methods for using botanical evidence in crime investigation in their research. They described the importance of obtaining crime scene information through DNA analysis and microscopic examination of plants. Their research further strengthened the practical application in the field of forensic botany. These pocket plants live until they can be frozen. It is also important to collect representative system components to obtain different system extracts. Roots, nutrient shots, flowers, fruits and seeds can be collected and stored in various plastic bags. You must stop the site system collection. Additionally, it is recommended that you identify the system by a botanist and place a copy of the voucher in nearby plant samples. After all, photographs taken in the area where rehearsals were collected are extremely advantageous for the identification and collection system. Forensic botany uses various botanical evidences in investigations, including leaves, branches, seeds, pollen, wood, roots, and flowers. This evidence helps in identifying the place, time, and perpetrator of a crime. Each type of evidence provides specific information that plays an important role in strengthening and validating the investigative process (Bock et al., 2010).

https://pakjmcr.com/index.php/1/about

Online ISSN

Print ISSN

Gulzaib et al - 2025

3007-2387

3007-2379

Forensic Botany: Scope and Significance

Forensic botany is the scientific study of plant biology and its practical application in law. This field involves the analysis of plant components such as leaves, seeds, pollen, and wood to aid in the investigation of crime. This knowledge provides strong evidence in court and helps to arrive at the truth in legal matters. This includes the identification, analysis and interpretation of plant materials such as pollen, seeds, leaves, wood and fiber James and Nordby (2003) highlighted the importance of botanical evidence in forensic science in their research. They explained how plant components such as pollen, seeds, and leaves help to establish a connection between a crime scene and a suspect. Their research helped to establish an effective and scientifically sound investigation. As an interdisciplinary domain combining elements of botany, ecology and forensic medicine, forensic botany has become a valuable tool for civil and crime research, particularly because of murder and incentives, environmental crime, graves and roses. Even microscopic plant materials such as pollen grains and spores vary very differently across specific geographical regions and seasons, creating useful indicators of time and place Baldwin and Casabianca (2016) described practical ways to use botanical evidence in forensic science in their research. They explained how plant components such as pollen, seeds, and leaf particles help in identifying crime scenes and establishing a connection with the suspect. Their research made the investigative process more effective. For example, if pollen found in the suspect's clothing corresponds to flora in a particular area, it can be placed at a crime scene (Goff, 1991). Pollen is extremely strong and durable and easily sticks to clothing, skin, and personal items. Because of this property, pollen is used as important evidence in crime investigations. It helps prove the presence of a criminal in a specific place or environment and can be presented as evidence in court. Different plants are seasonal and their types and growing times vary from region to region. That is why plants and their components such as pollen and seeds are important in identifying crime scenes. With the help of this information, the presence of a criminal in a particular area or season can be traced, which strengthens the investigation. Pollen studies, understanding seasons and time of death, movement of isolated patients and victims De la Cruz and Rapp (2017) emphasized the application of modern techniques in forensic botany in their research. They explained how genetic analysis of plants, pollen and seed identification can be used to establish a link between a crime scene and suspects. Their work is an example of the effective use of botanical evidence in crime investigations. For example, if the body is found in a flat tomb, the growth of roots and plants can provide information about the body's time (Latham & Myers, 2014). Similarly, plant species identification at crime scenes can indicate whether

https://pakjmcr.com/index.php/1/about

Online ISSN

Print ISSN

Gulzaib et al - 2025

3007-2387

3007-2379

the environment is being hindered. This shows a bad game (Coyle, 2005). Additionally, plant-based knowledge was used to recognize drug cultivation, illegal logging, and environmental damage (Morgan & Henricks, 2010). Techniques such as DNA barcoding have allowed forensic scientists to identify highly accurate plant species from small or broken samples (Kress et al., 2005). This is especially useful when visual identification is not possible due to damage or fragmentation (Valentini et al., 2016). However, their importance is recognized as successful case studies, and forensic medicine is becoming increasingly interdisciplinary (Dickinson & Reddy, 2013). By analyzing herbal evidence, forensic botanists can help people place at crime scenes, identify hidden graves, determine schedules, establish important connections to crime issues, and determine environmental crimes. In the course of forensic technology, the scope and accuracy of forensic botany increases to further improve the importance of modern research (Froede & O. Neill, 2011).

Plant identification

The most common way to identify plants in the world remains plant identification. Even if botany and DNA studies have caused serious disorders in older taxonomic categories, they are the dominant ways to identify plants. However, because different system functions of a particular system can be lost in the raw material system, system identification is not included as a test and is recorded in almost all official drugs. In the past, many plant species within a particular genre were used as special plant medicines, sometimes via individual genera. Health systems such as Salix-Purpurea are mentioned more frequently than certain common names. For example, Gallic Term cortical monkey I c refers to the bark of a previous compatible grass. Most types of drugs cover this method, but increase. (Hollingsworth 2011). If the person who received the easily recognized product has an educational or school background, then an identity declaration is appropriate. Plant acids are always available at a genre level, but basic toxicities may vary. Therefore, it is important to identify plants and their dangerous chemicals (genus and species). This often involves a part of the system with a scientific name and accreditor. The common names of plants in your home or garden are usually known to families, but the problem is that many different plants have the same common names (such as milk plants or milk grass). Certain ornaments are dangerous to cows, while other ornaments are threats to small animals. Others can safely eat and deal with it (Fowler, 1981). Therefore, treatment decisions can be made by vague general names. Vegetable toxicology is currently developing. It is important to recognize the names of harmful plants and make sure they all get the same name. Both common and scientific

https://pakjmcr.com/index.php/1/about

Online ISSN

Print ISSN

Gulzaib et al - 2025

3007-2387

3007-2379

names are required for scientific exchange and public communication. (Harris et al., 2011)

Application in agriculture

Forensic botany is the scientific examination of plant material used in the investigation of crimes. It involves the analysis of plant fragments, leaves, seeds, pollen, and wood, etc. to help identify the location, time, and perpetrator of a crime. This field makes crime investigation stronger and more effective. Forensic botany is presented as strong evidence in court and has proven to be a valuable tool for both the agribusiness community and criminal investigations. Plant evidence can resolve issues such as land ownership, crop disputes, and the presence of a criminal, which strengthens court decisions. Forensic botany plays a vital role in resolving disputes, verifying fraud, ensuring food safety, and regulating farm laws and biosafety policies in agriculture. It can be used to identify the origin, quality, and genetics of crops, providing a source of confidence for farmers, consumers, and government agencies.. Seed producers, plant breeders, and plant inspectors often face problems such as seed failure, unknown patented plant cultivars, or misnomers. These problems affect agricultural production and lead to legal disputes. Forensic botany helps solve these problems. Forensic botanists use morphological analysis, microscopic examination and, more recently, DNA barcodes to authenticate plant material. This process enables farmers to obtain quality and authentic seeds and plant material. This improves crop yields, reduces fraud and promotes transparency in the agricultural sector. Through the study of the examination of infected plant tissues and pollen, spores, or soil residue, experts can correctly identify the source of the occurrence and implement immediate quarantine procedures for the benefit of local plant protection. This is important in clinical treatment of biosecurity incidents and prevention of economic loss in agriculture. Vegetation can be evaluated, for example, to determine whether the farm possesses sufficient land management practices or illegal design or cultivation of prohibited vegetation. Herbivores in animal feed and fodder analysis determine specialists to find pollution or falsity somewhere other than the scene of the crime to ensure quality assurance, disease control and sustainability of the environmental network. By filling the gap between plant science and research technology, we provide farmers, bosses and industries with consistency and productivity in agriculture (Coyle et al., 2005).

Forensic Botany

Understanding the nature of the system and its origins is helpful in determining the location and purpose of illegal activity (Besga et al., 2025). When the complete structure and workings of a system are known, suspicious or illegal activities occurring in it can be

https://pakjmcr.com/index.php/1/about

Online ISSN

Print ISSN

Gulzaib et al - 2025

3007-2387 3007-2379

quickly identified and effective measures can be taken against them. The team separates researchers and checks plant and fungal samples that use modern technology to solve crimes. When answering research questions, all Kew Science components must be put together, and an extensive collection, database and expertise in world-class botany should be used. This previous information is valuable and important. We continue to collect and collect information about plant use, even in cases of harmfulness such as murder. Identifying plants correctly can make the difference between life and death. Professional staff members are able to work fast and respond to questions right away. We are accustomed to using plants for a variety of practical and decorative purposes, including food, fiber, and medicine. If the plant is being used as proof of persecution or in a criminal or civil action, or if it is unjustly linked to suicide or homicide. Forensic botany is relevant if the system is connected to illegal activities. The use of a system or system product in a system SC or legal issue is called proof of criminal substances as an investigation into the reasons for murder, aging, or death of a person. In this case, Bruno Hauptmann was the main suspect. Wood anatomy expert Arthur Kohler was one of a variety of witnesses. The judge disagreed with the defense that the wood experts are so strange and ridiculous. The presentation came from Arthur Kohler.

Plant Material Analysis

These assays provide important information on malnutrition, snow melting, and salt damage caused by soil and plant transport. We have reached one of 59 European Institutes that participated in the International Cooperative Program to assess and monitor the impact of air pollution. Forest-related forest programs have been supported by the Institute of Plant Analysis for almost 40 years. Currently, there are ways to create extensive knowledge - procedures, evaluate various materials, and provide design instructions for the experiment. In contrast to many non-commercial analyses and testing facilities, consistent controls are determined using relevant references. In other words, the results are suitable for thorough testing and publications. Chemical testing of plant leaves and other organs is called analysis of plant tissue. The availability of diets in the soil is often associated with high nutrient concentrations of plants. However, there are factors that differ from the availability of soil nutrition that affect how well a plant absorbs certain nutrients. Since several factors may affect how the results are perceived, accurate plant analysis is essential. The following factors should be considered when collecting samples: Sections using the sample system. The amount of practice collected for the system and the phenolic operating conditions are very important during sampling. Collecting samples with these conditions in mind ensures accurate testing and analysis of the system. When operating conditions such as temperature, pressure, and chemical

https://pakjmcr.com/index.php/1/about

Online ISSN

Print ISSN

Gulzaib et al - 2025

3007-2387

3007-2379

composition are taken into account during sampling, the results are more reliable and effective. This procedure increases the accuracy of the research and helps in timely identification of any malfunctions or problems. This can improve the performance of the system. This method enables quality research reporting and any problems can be easily identified. When accurate data is collected by taking all factors into account, the results are factual. This enhances the quality of research, ensures proper use of resources, and effectively assesses the performance of the system. If operating conditions are not appropriate, the results can be affected and the validity of the research can be questioned. Incorrect temperature, pressure or chemical composition can cause the sample to be substandard, making the analysis unreliable. Therefore, maintaining the correct conditions for research is very important. Very old plants are not considered suitable representatives for research or analysis because their structure and chemical composition change over time. Older plants may have lower or unbalanced levels of nutrients and active ingredients, which can affect research results. Therefore, it is better to use fresh and appropriately aged plants. Older plants or older parts have higher amounts of calcium, magnesium, manganese, and bark, while new or younger tissues have higher amounts of nitrogen (N), phosphorus (P), and potassium (K). Because of this difference, it is important to take these points into account in nutritional analysis and plant growth evaluation. Even if the system is fertile at the same rate, nearby experimental plants can still provide different results. This difference is due to local soil conditions, moisture, light, and nutrient distribution. That is why it is important to take samples from more than one location in research and analyze them so that the results are more accurate and reliable. Different plants are significantly higher in environments with low nitrogen levels. Knowledge Analysis Phytonutrients are called dry weight. Increases in nutrient concentrations across key concentrations do not affect sales, as an increase in nutrient concentrations leads to a decrease in revenue before the nutrient concentration reaches the second threshold. In most cases, bed and plant analysis are correlated analytical findings.

Plant Evidence

Pollution can have a negative impact on human health and the ecosystem. Finding a container source, measuring it, and figuring out its length are the objectives of a scientist. Reviews will be carried out in the community and in the lab. It is possible to prevent contamination by identifying the cause. There are three types of environmental sources: chemical, organic, and physical. There could be both natural and man-made sources. One kind of pollution brought on by industry is oil contamination. Excavation strips, pipelines, tankers, offshore platforms, or fountains can all be leaked. This can also occur

https://pakjmcr.com/index.php/1/about

Online ISSN

Print ISSN

Gulzaib et al - 2025

3007-2387 3007-2379

in athletics. The long-term consequences of oil contamination in plants and animals are devastating. It also has a negative impact on people's health and finances by blocking air, food sources and quality. However, if the source is a mining or production system, they are considered industrial pollutants. Many people, ecological consultants and animal lovers use DNA analysis services. We occasionally caught whales in the distance and dealt with the exciting and wonderful cat hunts in England. Additionally, we offer testing services for future samples including Canids such as CAT DNA and foxes. Our team uses outdated technology. DNA research is used to provide this service to the public. Our goal is scientific and advantageous. Thanks to the submitted samples, we can create photographs of the genetic diversity and evolutionary background of related species. Details of this exam can be found at BAT. A large collection of guano samples currently under examination is being inspected in the UK's niche sector. Guano or child beds are usually carried to us for DNA extraction and sequencing. The fabric (probably a small part of the wing membrane) and hair were also successful. Scientific research on environmental toxins is specifically aimed at determining the source or source. (Dennell et al., 1974)

Conclusion

In addition to providing ecological and seasonal data for criminal investigations and suspected crime scenes, forensic botanists offer vital evidence for planning choices. In forensic investigations, plant evidence can be utilized to distinguish between prohibited conditions and unlawful conduct. Even though they frequently hide features, methods like pollen analysis, wood, and the development of plant-dna profiles have made it possible to examine materials more thoroughly. A crucial and innovative area of forensic medicine, forensic botany provides useful information that significantly enhances the testing procedure from the standpoint of ecosystems and natural resources.

References

- Besga, S., Rodriguez, N., Sallaberry, A., Papastergiou, T., & Poncelet, P. (2025). Task-blind adaptive virtual reality: Is it possible to help users without knowing their assignments?. Virtual Reality, 29(1), 1-16.
- Brettell TA, Butler JM, Almirall JR. Forensic science. Analytical Chemistry. 2011 Jun 15;83(12):4539-56.
- Briggs D, Walters SM. Plant variation and evolution. Cambridge University Press; 2016 Jun 30.
- Bock CH, Poole GH, Parker PE, Gottwald TR. Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Critical reviews in plant sciences. 2010 Mar 10;29(2):59-107.

https://pakjmcr.com/index.php/1/about

Online ISSN

Print ISSN

Gulzaib et al - 2025

3007-2387

3007-2379

- Coyle, H. M., Lee, C., Lin, W., Lee, H. C., & Palmbach, T. M. (2005). Forensic botany: using plant evidence to aid in forensic death investigation. Croatian medical journal, 46(4), 606.
- Cruz-Cruz CA, González-Arnao MT, Engelmann F. Biotechnology and conservation of plant biodiversity. Resources. 2013 Jun 4;2(2):73-95.
- Baldwin, B., & Casabianca, H. (2016). Microscopic plant materials as indicators of time and place.
- Coyle, H. M. (2005). Plant species identification in forensic investigations.
- De La Cruz, F., & Rapp, G. (2017). Use of pollen studies in forensic cases to determine time of death and victim movement.
- Dickinson, A., & Reddy, K. (2013). The interdisciplinary importance of forensic medicine and botany.
- Froede, C. R., & O'Neill, M. (2011). Advancements in forensic botany and technology.
- Goff, M. L. (1991). Application of pollen analysis to place suspects at crime scenes.
- James, S. H., & Nordby, J. J. (2003). Forensic science: An introduction to scientific and investigative techniques.
- Kress, W. J., et al. (2005). DNA barcoding for species identification in forensic botany.
- Latham, K., & Myers, M. (2014). Root growth and plant analysis in determining time since death.
- Morgan, R., & Henricks, D. (2010). Forensic botany in environmental crime investigations.
- Valentini, A., et al. (2016). DNA-based identification methods for damaged plant materials.
- Coyle HM, Ladd C, Palmbach T, Lee HC. The green revolution: botanical contributions to forensics and drug enforcement. Croatian Medical Journal. 2001 Jun 1;42(3):340-5.
- Dennell RW. Botanical evidence for prehistoric crop processing activities. Journal of Archaeological Science. 1974 Sep 1;1(3):275-84.
- Dawson LA, Mayes RW. Criminal and environmental soil forensics: soil as physical evidence in forensic investigations. InIntroduction to environmental forensics 2015 Jan 1 (pp. 457-486). Academic Press.
- El Sheikha AF, Levin R, Xu J. Molecular techniques in food biology. John Wiley & Sons Ltd.: New York, NY, USA; 2018.
- Harris JG, Harris MW. Plant identification terminology: an illustrated glossary. Spring Lake, Utah: Spring Lake Publishing; 1994 May.
- Jadhav EB, Parihar K, Sankhla MS, Sonone S. Collection of Botanical Evidence. InManual of Crime Scene Investigation 2022 Oct 28 (pp. 119-131). CRC Press.
- Joshi DD. Herbal drugs and fingerprints: evidence based herbal drugs. Springer Science & Business Media; 2012 Nov 2.
- Kasprzyk I. Forensic botany: who?, how?, where?, when?. Science & Justice. 2023 Mar 1;63(2):258-75.

https://pakjmcr.com/index.php/1/about

Online ISSN

Print ISSN

Gulzaib et al - 2025

3007-2387

3007-2379

- Kumar S. A knowledge based reliability engineering approach to manage product safety and recalls. Expert Systems with Applications. 2014 Sep 1;41(11):5323-39.
- Neale MC, Aggen SH, Maes HH, Kubarych TS, Schmitt JE. Methodological issues in the assessment of substance use phenotypes. Addictive behaviors. 2006 Jun 1;31(6):1010-34.
- Smith JH, Benitez A. Chlorophylls: analysis in plant materials. Modern Methods of Plant Analysis/Moderne Methoden der Pflanzenanalyse: Volume 4. 1955:142-96.
- Schaal BA, Hayworth DA, Olsen KM, Rauscher JT, Smith WA. Phylogeographic studies in plants: problems and prospects. Molecular Ecology. 1998 Feb;7(4):465-74.
- Smolenyak M, Turner A. Trace your roots with DNA: Using genetic tests to explore your family tree. Rodale; 2004 Oct 27.
- Schuler MA, Zielinski RE. Methods in plant molecular biology. Academic Press; 2012 Dec 2.
- Sharma A, Namdeo A, Mahadik K. Molecular markers: New prospects in plant genome analysis. Pharmacognosy reviews. 2008;2(3):23.
- Upton R, David B, Gafner S, Glasl S. Botanical ingredient identification and quality assessment: strengths and limitations of analytical techniques. Phytochemistry Reviews. 2020 Oct;19(5):1157-77.
- Vavilov NI, Dorofeev VF. Origin and geography of cultivated plants. Cambridge University Press; 1992 Oct 22.
- Warder JA. Apples. BoD–Books on Demand; 2018 Apr 5.