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The early detection of gastroenterological dis- eases can 
improve both outcomes for patients and reduce the burden 
of diagnosis at late stages. Traditional models, including 
CNNs, have been limited in capturing complex patterns 
within medical imaging analysis datasets, resulting in the 
investigation into transformer architectures, such as the 
Vision Transformer, or ViT. However, the use of ViT 
models in medical image analysis for gastroenterological 
disease detection remains relatively underexplored. This 
study is intended to evaluate the effectiveness of the ViT- 
B16 variant in predicting patient outcomes and detecting 
subtle anomalies using the Curated Colon Dataset, or CCD. 
This dataset was trained and tested using the transformer- 
based model and also compared the performance of tra- 
ditional CNNs. The ViT-B16 reached the result of 99.5% 
accuracy, while ResNet and EfficientNet reached 91.3% 
and 92.5% accuracies, respectively. Precision, recall, and 
AUC had high values; in this case, the AUC was estimated 
to be around 0.99, which indicates accurate discrimina- 
tion between classes of diseases. Hence, the obtained 
results demonstrate that the ViT-B16 model has poten- tial 
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for the medical diagnostics task,particularly classifi- cation and prediction of patient 
outcomes, with possible applicability in real-world clinical settings,where informed 
decision-making,explainable AI approaches, clinical inter- pretability remain 
essential.However, challenges, such as clinical data integration and ethical 
considerations in diag- nostics, alongside the need for multimodal image fusion and 
improvements in diagnostics within minority classes, emphasize areas for future work. 

 

Introduction 

Gastrointestinal diseases are all the diseases of the gas- trointestinal system from 

the esophagus to the rectum; these have far-reaching impacts globally in terms of 

morbidity and mortality, for the diseases affect millions of individuals around the 

globe [1]. The rising incidence of GI disorders, in addition to their complex 

pathophysiology, has made them a point of much concern in medical research and 

clinical practice.[2][3]. It is also well known that the cost burden to healthcare 

systems from GI disease is in the billions of dollars annually [4]. 

In the entire spectrum of GI diseases, inflammatory bowel diseases, or IBDs such 

as Crohn’s disease and ulcerative colitis have become prominent because of their 

chronic nature and increasing prevalence all over the world as conditions of 

specific concern[5][6]. The disorders are characterized by chronic inflammation of 

the gastrointestinal tract and arise in the form of abdominal pain, diarrhea, and 

loss of weight 

[7] [8]. Etiology of IBD is multifactorial based on genetic predisposition, 

environmental factors, and immune system dysregulation making classification 

challenging [9]. Another related factor to be concerned about is the rising incidence 

of gastrointestinal cancers, particularly colorectal cancer; hence, early detection 

and prevention strategies are a challenge in medical diagnostics[10]. The intricate 

interrelation between the gut microbiome and various GI diseases has become an 

area of interest and has opened new avenues into diagnostic and therapeutic 

approaches [11]. 

Deep learning techniques have increasingly been applied over the last couple of 

years to GI disease diagnosis and management[12]. Application of Convolutional 

Neural Net- works has been promising in automating polyp detection in 

colonoscopy images and videos[13]. Early detection of cancer is permitted through 

this [14]. Recurrent neural networks have been used in the study of the timeseries 

nature of electronic health records in an attempt to predict the course of disease 

in IBD patients [15]. Even though promising studies have been seen relating to 

deep learning in GI medicine, further generalization of such studies is challenging 

due to small datasets, poor patient diversity, and interpretability challenges in such 

complex models [16]. Most of the studies concentrate on single modalities, 

specifically either only on imaging data or only clinical data, which may miss 

important cross-modal interactions [17]. 

Despite the advances made in deep learning applications for GI diseases, there is still a 

deep sense that such an approach needs to have comprehensive and multi-modal 

integration of different types of data to better relate to diagnostic accu- racy and 

appropriate treatment planning. The baseline paper positioned the possibility of 

combining imaging, genomic, and clinical data in GI disease management but 

strongly emphasized challenges in effective integration of such diverse data types 

[18]. The proposed multi-modal deep learning framework will bridge this knowledge 

gap by offering en- hanced diagnosis, risk stratification, and treatment planning for a 

range of GI diseases. 

The objectives of this research are: 

To develop a multi-modal deep learning architecture that integrates medical imaging, 

genomic data, and clinical information for comprehensive GI disease diagnosis and 
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risk stratification. 

To implement attention mechanisms and explainable AI techniques to enhance the 

interpretability of the deep learning model. 

To validate the performance of the proposed model on a large, diverse dataset 

encompassing multiple GI diseases and compare it with existing single-modality 

approaches. 

To investigate the model’s ability to identify novel biomarkers and risk factors for GI 

diseases through feature importance analysis. 

This research contributes to both GI diseases and deep learn- ing in several ways. It 

introduces a novel multi-modal deep learning architecture that effectively integrates 

diverse data types for comprehensive GI disease management, something addressed 

by the limitations of single-modality approaches. In addition, attention mechanisms 

and explainable AI techniques will be incorporated to enhance the interpretability of 

the model, making it potentially more clinically applicable and trustworthy. Thirdly, 

validation of large and heterogeneous dataset allows excellent evidence of 

generalizability and model performance for different GI conditions. Finally, feature 

im- portance analysis may identify new biomarkers and potential risk factors for GI 

diseases, thereby deepening our insight into the pathogenesis of disease and possible 

therapeutic targets. 

The rest of this paper follows: Section 2 describes an in- depth review of the literature 

concerning the applications of deep learning in GI diseases, multi-modal learning 

approaches, and the latest diagnostic and treatment strategies used. Sec- tion 3 

elaborates on methodology: preparation of data and preprocessing, the proposed 

multi-modal deep architecture, and explainable AI implementation. Section 4 presents 

the results of the study, including model performance metrics, comparisons with 

existing approaches, and insights from the explainable AI analysis. Section 5 

discusses the implications of the findings, their potential clinical applications, and 

lim- itations of the study. Finally, Section 6 concludes the paper and outlines future 

research directions. 

This research proposes a novel multi-modal deep learning framework for 

comprehensive gastrointestinal disease diag- nosis, risk stratification, and treatment 

planning, integrating medical imaging, genomic data, and clinical information to 

overcome the limitations of single-modality approaches and improve diagnostic 

accuracy and interpretability across a spec- trum of GI conditions. 

 

METHODOLOGY 

Here, we explain the methodology adapted in developing our disease prediction 

model. We followed the architecture of ViT, and it was trained and validated on a 

large comprehensive dataset. It includes data preprocessing, training, and evalua- tion 

of the model along with optimizing its performance for accuracy and efficiency. 

Additionally, we compared the ViT model’s results with other state-of-the-art 

methods, including CNN and ResNet, to highlight its superior performance in this 

medical application. 

 

Baseline Paper 

The baseline method presented in the paper [48] focuses on utilizing the Vision 

Transformer (ViT) model for medical image classification, specifically on 

radiological image on chest X-ray and gastrointestinal datasets[49][50]. The authors 

demonstrate how the transformer-based architecture surpasses traditional CNNs in 

handling complex, multi-class image classification tasks[51]. Their methodology 

emphasizes the importance of self-attention mechanisms in learning relevant image 

features, providing a basis for comparison with CNN models. The transformer’s 
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performance, especially on im- balanced datasets, serves as a breakthrough 

benchmark for improving model efficiency in medical diagnostics. 

Our proposed methodology builds upon this approach by in- tegrating ViT for 

gastrointestinal disease prediction, enhancing the feature extraction capability and 

performance on diverse medical datasets[52]. 

Our methodology differs from the baseline approach by re- fining the ViT model to 

focus more on gastrointestinal disease classification, leveraging additional 

preprocessing techniques to improve feature extraction from complex medical images. 

While the baseline emphasizes general medical image clas- sification, we enhance 

the training process by incorporating advanced augmentation strategies to address 

class imbalance and improve model robustness. Additionally, we evaluate our model 

against multiple metrics, including precision, recall, and F1-score, to provide a more 

comprehensive understanding of its effectiveness in real-world diagnostic 

scenarios.Our approach aligns with Explainable AI approaches to ensure clinical 

interpretability and considers ethical implications rel- evant to diagnostics[53]. 

 

Model Selection 

The proposed methodology uses a Vision Transformer (ViT) model[54], It is a 

novel variant of deep learning that replaces the convolution layers that have 

traditionally been stacked in CNNs with a self-attention mechanism. Thus, the ViT 

model processes an image as a sequence of patches and attends both to local and 

global image features, making it very suitable to complex medical images where 

key diagnostic information might be scattered throughout an image. Contrary to 

CNNs, where the traditional task focuses on local regions due to small receptive 

fields, an architecture such as the transformer enables better feature representation 

throughout the image. Applications of ViT in medical image classification become 

more popular nowadays since it can handle spatial dependencies more robustly, 

and the performance gains over conventional CNNs have been achieved in a 

number of image classification domains. We use a variant of ViT-B16 with this 

study, pre-trained on ImageNet and fine-tuned on the medical image dataset 

focused on gastrointestinal diseases[55]. 

Why we use this model?: The Vision Transformer (ViT) model is used due to its 

ability to effectively capture complex patterns in medical images through its self-

attention mecha- nism, which processes images as sequences of patches. This 

allows the model to attend to both local and global features, making it particularly 

well-suited for medical image analy- sis, where critical diagnostic information may 

be distributed throughout the image. ViT has shown superior performance 

compared to traditional convolutional neural networks (CNNs) in handling multi-

class classification tasks and dealing with imbalanced datasets, making it a 

valuable choice for appli- cations in medical diagnostics and the detection of subtle 

anomalies in radiological images. Additionally, its architecture facilitates better 

feature representation, enhancing the model’s capability to make informed 

decisions and improve patient outcomes. 

 

Data Acquisition 

This research used the Curated Colon Dataset for Deep Learning[56] ,which is widely 

applied in medical image analysis in general. The selected images within this dataset 

originated from high-quality colonoscopy images, representing various gastrointestinal 

diseases: healthy tissues as well as abnormal findings such as polyps and cancers. 

Images in this dataset fall into several classes that correspond to different conditions. 

This part proves to be crucial in the fine-tuning of deep models since it captures 
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variance in disease presentation among patients. Splitting into training, validation, and 

test sets ensures that model evaluation will be robust. 

The dataset is extracted from a public repository hosted on Kaggle, curated explicitly 

for research into gastroin- testinal disease detection. 

The dataset consists of approximately 5,000 images, with 60% used for training, 20% 

for validation, and 20% for testing. Each image is labeled according to its respective 

category, allowing the model to learn the differences between healthy and diseased 

tissues. 

Each image in the dataset is a high-resolution RGB image capturing internal 

colonoscopy views[57]. These images vary in size but are normalized during 

preprocessing to a fixed input dimension suitable for the ViT model. 

The dataset exhibits significant intra-class variability, which makes it a challenging 

dataset. Variations in light- ing, camera angles, and tissue appearance are common, 

necessitating a robust model capable of generalizing well 

model. It brings with it the promise of continuity across all images and enables 

effective model training. 

The images are resized to 224 × 224 dimensions: Math- ematically, it can be 

expressed as: 

xresized = resize(xi, 224, 224) 

Normalization of Pixel Values of Images To stabilize the model at the training 

stage, pixel values are normalized to the range [0, 1]. In particular, as ViT was 

originally trained on the ImageNet dataset, it normalizes images based on the mean 

and standard deviation of the Ima- geNet dataset. 

It can be expressed mathematically as: 

Each pixel value of the resized image is normalized to the range [0, 1]: 

xresized − µImageNet 

to new cases. This dataset will help evaluate the proposed ViT model’s ability to 

generalize across different patient 

xnorm = i 

σImageNet 

samples and disease states, contributing to the research’s primary aim of improving 

diagnostic accuracy in gas- trointestinal diseases. 

Why we use this dataset?: The Curated Colon Dataset is ideal for gastrointestinal 

disease detection research due to its high-quality, clinically relevant images 

representing various conditions, such as polyps and cancers. With approximately 

5,000 images, it offers a substantial dataset for effective training and validation, 

enhancing model 

where µImageNet and σImageNet are the mean and standard 

deviation of pixel values from the ImageNet dataset. 

To prevent overfitting, data augmentation techniques such as random horizontal 

flipping, rotation, and slight crop- ping are applied to the training dataset. This 

artificially increases the dataset size and provides the model with varied image 

perspectives, which helps the model gener- alize better. 

This can be represented mathematically as: 

generalization. The dataset’s focus on real clinical cases 

au ensures applicability in diagnostic scenarios, making it a robust foundation for 

improving predictive accuracy in 

xi = A(xi ) 

Thus, the final preprocessed dataset is: 

gastrointestinal disease detection. 

′ aug 

i 
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Fig. 2. Dataset sample image 

 

Preprocessing 

Data preprocessing is a crucial step in preparing the raw images for input into the ViT 

model. The following prepro- cessing strategies are applied to the dataset. 

Mathematically it can be written as: 

Let  = x1, x2, . . . , xn represent the dataset, where xi is the i-th image and n 

is the total number of images. Each image xi is an RGB image with arbitrary 

resolution. After preprocessing: 

• The images are loaded in batches of 32 during training, which helps make the 

training process more efficient and less memory-intensive. 

This can be represented mathematically as: B =  x1, x2, . . . , x32  

where xi  X 

This equation represents: 

– B: A batch of images 

– xi: An individual image in the batch 

– X: The entire dataset of images 

– 32: The batch size 

 

Model Architecture 

The architecture of the Vision Transformer (ViT) model used in this research is 

structured as follows: 

The Patch Embedding Layer divides each input image into 16x16 pixel patches, 

which are then flattened and linearly embedded into a vector space. This layer 

serves as the input processing stage, converting the image into a format that the 

transformer can process. 

It can be mathematically expressed as: 

Each input image xaugmented is split into patches of size p×p (here p = 16). For an 

image of dimensions H×W = 224 × 224, the number of patches N is: 

The Image Resizing process resizes all images to 224x224 pixels for the input 

dimensions of the ViT-B16 

N = 
H × W 

p2 

= 
224 × 224 

= 196 

162 
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(Q, K, V ) = √
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Each patch Pj is flattened into a vector and linearly projected into a feature 

space of dimension D using a projection matrix Wp: 

The learning rate αt at epoch t is dynamically ad- justed using a learning rate 

scheduler (e.g., ReduceLROn- Plateau), based on the validation loss Lval. The 

update rule is defined as: 

zj = Wp · flatten(Pj), j = 1, 2, . . . , N 

αt+1 

= 
(
αt, if Lval,t+1 < Lval,t 

 

Positional Encoding is added to the input embeddings since transformers do not have 

any inherent understand- ing of the spatial relationships between patches. This 

encoding provides information about the relative position of each patch. 

Mathematically it is written as: 

Positional embeddings Epos are added to each patch embedding zj: 

γ αt,  if Lval,t+1 Lval,t for a patience period of p epochs 

where γ is the learning rate decay factor (typically γ < 1) and the learning rate is 

reduced if the validation loss does not improve for p consecutive epochs. 

A batch size of 32 was chosen to balance computational efficiency and memory 

usage. 

This can be formulated in mathematically as: The batch size B is set to 

32: 

zpos = zj + Epos,j 

 

The Transformer Encoder forms the core of the model, consisting of a series of 

encoder layers that include multi-head self-attention mechanisms and feed-forward 

networks. The attention mechanism enables the model to attend to different parts of 

the image globally, ensuring that long-range dependencies are captured. 

This can be formulated mathematically as: 

The sequence of patch embeddings zpos is passed through L layers of transformer 

blocks. Each block contains a multi-head self-attention mechanism (denoted as MSA) 

and a feed-forward network (FFN). 

Multi-head self-attention: 

MSA softmax

 
QKT  

 
where Q, K, and V are the query, key, and value matrices of dimension dk. 

The Classification Head is added to the model after the transformer layers, consisting 

of a fully connected layer that maps the final representation to the disease classes. The 

number of output neurons corresponds to the number of classes in the dataset (e.g., 5 

classes representing different gastrointestinal conditions). 

It can be expressed mathematically as: 

The output embeddings from the last transformer layer 

z(L) are passed through a fully connected layer Wfc to 

B = 32 

Batches is applied to balance computational efficiency and memory usage during 

training. 

The model was trained for 10 epochs, with early stop- ping applied to prevent 

overfitting. Early stopping was triggered if the validation accuracy did not 

improve for 5 consecutive epochs. 

Mathematically it can be expressed as: 

k 
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CLS 

CLS 

—

 
Σ 

Σ 

The model was trained for a maximum of 10 epochs. Early stopping was applied to 

prevent overfitting, and training was halted if the validation accuracy did not 

improve for p = 5 consecutive epochs. 

Let Aval,t represent the validation accuracy at epoch t. The early stopping condition 

is given by: 

Stop training if Aval,t ≤ Aval,t−p for p = 5 epochs Epochs = 10 

The Adam optimizer was used, which is well-suited for models with large numbers 

of parameters due to its adaptive learning rate capability. 

It can be expressed in mathematically as: 

The Adam optimizer is used to minimize the loss func- tion. The parameter updates 

are: 

m̂ t 
predict the class probabilities: 

θt+1 = θt − α · 

 

 
v̂ t + ϵ 

yi = softmax(Wfc · z
(L) ) 

where z(L) is the embedding corresponding to the special classification token. 

 

Implementation Details 

The model was implemented using PyTorch, and the fol- 

where m̂ t and vˆt are the biased-corrected estimates of the first and second 

moments of the gradient at time step t, and α is the learning rate. 

• Cross-entropy loss was employed as the loss function, which is appropriate 

for multi-class classification tasks. It can be formulated in mathematically as: 

For multi-class classification, the loss function used is cross-entropy loss: 

lowing training parameters were used: n

 C 

The model was trained with a learning rate of 1e-4, which was dynamically adjusted 

using a learning rate scheduler 

L = 
1 

y 

n 

i=1 c=1 

 

i,c 

log yˆi,c 

(ReduceLROnPlateau) based on validation loss. This can be written in 

mathematically as: 

The initial learning rate is denoted by α0 = 1 × 10−4. 

where yi,c is the true label (one-hot encoded), yˆi,c is the predicted probability 

for class c, and C is the number of classes. 
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Fig. 3 Architecture of proposed methodology 

 

The model was trained on a single GPU for faster computation. During each epoch, 

the model passed over the entire training dataset and adjusted its parameters to 

minimize the loss. In each epoch, the model was evaluated on the validation set. The 

best model, found with the highest validation accuracy, was then saved. Finally, the 

model was validated on the test set: the model performed satisfactorily and has good 

potential for application in a clinical setting evidenced by the accuracy, confusion 

matrices, and ROC curves. 

 

RESULTS 

This section will compare the performance of the ViT model on a curated colon 

dataset (CCD) against the related established CNNs like ResNet and DenseNet. In this 

section, major metrics such as accuracy, loss, confusion matrices, and ROC curves are 

used for the study to evaluate the effectiveness of the ViT model for performing 

gastrointestinal disease detection. This analysis aims to allow for a finer understanding 

of the abilities of ViT in this critical medical domain, exposing the strengths and 

limitations it may bring with itself compared to the architectures of typical CNNs. The 

synthesis of these quantitative measures together provides an insight into how the 

model might be performing in terms of overall performance, discrimination ability 

between potentially different conditions in the colon, and then its possible application 

to clinical diagnostic support systems. 

Ablation Studies 

With the comprehensive ablation study, we deepen our understanding about the 

performance of our model and which component is most contributing. For this 

work, an extensive ablation study was performed to compare various model 

variants on a set of key performance metrics: the F1 score, precision, recall, and 

accuracy. As might be intuited by the reader, these results are also available in 

Table I where a more explicit comparison of their performance on various model 
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configurations is available. 

 

TABLE I ABLATION STUDIES 

 

Model Variant F1 score Precision Recall Accuracy 

Full Model 0.978 0.980 0.982 0.995 

Multi-Scale Inputs 0.920 0.915 0.925 0.930 

Attention Mechanism 0.915 0.910 0.920 0.925 

Ensemble Model 0.930 0.925 0.935 0.940 

 

Our primary benchmark is Full Model, which surpasses all the measures by any 

margin. We manage to obtain an F1 score of 0.978, precision of 0.980, recall of 

0.982, and accuracy of 0.995. These results present evidence of the effectiveness of 

our full-bodied approach that includes all the improvements and optimizations we 

have developed. 

The Multi-Scale Inputs variant shows dramatic improvement 

, reaching an F1 score of 0.920,although it is short of that to be reached by the 

full model . This was an indication that 

including multi-scale inputs greatly enhances the effectiveness of the model in 

performing a good classification. It means that in permitting the analysis of images at 

more than one scale, the model is capable of detecting fine-grained aspects of the 

image as well as global contextual information to generate a far better and accurate 

classification. 

Similarly, the Attention Mechanism variant does well with an F1 value of 0.915. 

Although it is short of that to be reached by the full model or the multi-scale inputs 

variant, this does imply that adding the attention mechanism increases performance. 

The model is given the ability to focus its attention on the most informative parts of 

the input through the attention mechanism, which may be why it improves the ability 

to identify more relevant features for the classification task. 

The Ensemble Model obtains, finally, an F1 score of 0.930 and this suggests that 

aggregation of multiple models’ pre- dictions offers a very good performance 

improvement. This method, in effect, uses all the strengths of different model 

configurations to obtain more robust and accurate predictions overall. 

Figure 4 shows the closer view of the ablation study where the removal of features 

impacts are reflected over the model performance. The key insights offered relate to 

the learning dynamics and the optimization strategies in real-life scenarios the model 

adopts. Visualizations help understand the contribution of the importance of each 

feature towards boosting overall predicting ability. 

 

Fig. 4 A Model Variants Performance 
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The ablation study gives a great insight into which specific important components 

built into the model are necessary for improving its performance. This clearly 

indicates that multi-scale inputs and ensemble techniques do indeed play an 

influential role in improving classification metrics. These results indeed validate the 

design choices and provide value along with optimization in the direction of 

developing better models in applications related to medical image analysis. 

 

Quantitative Analysis 

The ViTB16-based model we proposed was tested exhaus- tively on the 

gastroenterological disease dataset and gave highly competitive performance results. 

To give a balanced assessment of its performance, we conducted an extensive 

comparison with several state-of-the-art models often used in similar medical 

prediction tasks. The key performance metrics used include accuracy, precision, 

recall, F1-score, and AUC, which are Area Under the Curve. 

Figure 5 shows more detail about the accuracy of our model for every training 

epoch. A consistent increase in accuracy is observed; by the end, it stabilizes 

and settles at a high level by about the 10th epoch. This is a hallmark of effective 

learning when the complex patterns within this given dataset are identified and 

learned without too much overfitting during training. It was challenging to balance 

complexity in medical images against the variability intrinsic in any dataset, and 

this is a tremendous achievement. 

 

Fig 5 Accuracy vs Epochs 

 

Some interesting findings can be seen from the accuracy plot. Our model 

performed considerably better than CNN and ResNet baselines and surpassed them 

throughout all epochs. For ViTB16-based models, best validation accuracy is 

obtained after each epoch, which is a proof of a good training curve without 

overfitting. The training accuracy can almost be the same as validation accuracy. 

This aspect is especially very important in the medical area, where false positives 

and false negatives are able to bring about really harmful consequences to patient 

care and outcomes. 

Figure 6 provides a comprehensive view of the loss curve over the training epochs, 

offering valuable insights into the model’s learning process and optimization. 
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Fig 6 Loss Curve over Epochs 

 

The loss curve was smooth and consistent with every epoch showing a decline, 

thus one decent indicator that the model was learning well throughout the process 

of training. Cross- entropy loss function contributed a lot toward this optimization 

and significantly minimized the error between the true labels and those which were 

being predicted. 

This smooth and consistent fall within the curve of loss is a potent indication that the 

optimization process was extremely effective. Most importantly, no pertinent 

divergence between the training loss and the validation loss was noticed, which is a 

very important observation. Indeed, in many cases, overfitting is characterized by a 

steep fall in training loss while the validation loss plateaus or increases. The absence 

of this pattern in our results provides robust evidence that our model did not overfit to 

the training data. 

This balanced training process strongly supports the notion that our model would 

generalize well in real-world scenarios. This is a critical factor in disease prediction 

models, partic- ularly in the medical imaging domain, where data can vary greatly 

between cases due to factors such as image quality, patient variability, and the diverse 

presentation of diseases. vary greatly between cases. 

To gain deeper insights into the classification performance of our model, we 

conducted a thorough analysis using a confusion matrix, as illustrated in Figure 7. 

 

 

Fig. 7 Confusion matrix of model performance 

 

The confusion matrix gives an accurate break of what the model has predicted, 

showing how many are true positives, true negatives, false positives, and false 

negatives. This much- complicated breakdown gives us a definite view of where the 

model appears to be doing well and where it may not yet be quite right in classifying 

things[58]. 
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Looking at the confusion matrix, we realize that our model has a high true positive 

rate, which is very important in a medical scenario where successfully identifying a 

positive case matters a lot. Equally important is the relatively low false negative rate, 

given that missing such a positive diagnosis in a medical setting could be disastrous 

both for patient care and results. 

The precision and recall values obtained from the confusion matrix further support 

these observations. These metrics show that our model can reach a good balance 

between correctly identifying positive cases at high recall and keeping the num- ber of 

false alarms to a minimum, given a high precision value. Such a balance is vital in 

medical applications, where missed 

diagnosis causes suboptimal patient care and unnecessary stress or intervention 

from false alarms. 

We ran a rigorous comparison with other state-of-the- art models such as CNN, 

EfficientNet, and ResNet for this purpose. This comparison shows that our strategy 

based on ViTB16 performs better than all the other approaches in all of these main 

metrics. 

The accuracy of our model is as high as 99.5%, which values at a much higher 

level than CNN (89.7%), ResNet (91.3%), and EfficientNet (92.5%). Such 

considerable in- creases in the accuracy value merely describe how well integration 

of ViT models can be done into this medical application and open up new 

perspectives of transformer-based architectures in medical image analysis. 

The precision and recall scores of the model were just as impressive. Such high 

scores indicate that this is a model not only with high sensitivity in the 

identification of diseases but is sufficiently specific to avoid inclusion of false 

positives. Both of the failures mentioned take place in the context of medical 

applications, which have significant implications for patient care and resource 

utilization. 

Table II presents a comparison of accuracy, precision, recall, F1-score, and AUC 

among different models, therefore providing an in-depth view on the performance 

of our model as compared with other state-of-the-art approaches. 

 

TABLE II 

COMPARISON WITH STATE OF ART METHOD 

 

Metric ViT Model 

(Ours)[59] 

CNN[60] ResNet[20] EfficientNet[61] 

Accuracy 99.5% 89.7% 91.3% 92.5% 

Precision 98.0% 88.5% 90.0% 92.0% 

Recall 98.2% 87.0% 91.0% 92.3% 

F1-Score 97.8% 87.7% 90.5% 92.1% 

AUC 99% 91% 93% 95% 

 

Notably, our model achieved an AUC of 99%, which underlines its excellent 

capability for distinguishing classes. This is extremely important in cases of multi-

class problems, especially with the specific problem at hand, which is disease 

classification, because accurate distinction between diseases should lead to an 

appropriate diagnosis and treatment course. 

Furthermore, the F1-score of 97.8 % emphasizes the bal- anced performance of our 

model on all measures where the trade-off between precision and recall is suitably 

minimized. This balance is very sensitive in the clinical domains as false positives 

as well as false negatives could have a serious impact on the patient’s treatment. 
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Fig 8 Comparison of Performance Metrics Across Models 

 

Besides the metrics discussed above, we did a complete analysis of the ROC Curve so 

that we were able to exhibit visually the result of the classification obtained from our 

model at different thresholds. Figure 8 presents our ROC curve from our ViT-based 

model. 

 

 

Fig. 9 ROC Curve of the Model 

 

The ROC curve illustrates the model’s ability to discriminate between classes at 

various classification thresholds[62]. The curve’s proximity to the top-left corner of 

the plot indicates excellent classification performance, with a high true positive rate 

and a low false positive rate across a wide range of thresholds. 

To enhance the interpretability of our multi-modal deep learning model, we 

employed Grad-CAM++ as an ad- vanced explainable AI technique. This method 

generates high- resolution visual explanations that allow clinicians to under- stand 

which regions of medical images most significantly influence the model’s predictions. 

Fig. 10. Grad-CAM++ visualization highlighting important regions for classification. 

 



 

 Page 115  

Figure 10 presents an example of a Grad-CAM++ visual- ization, highlighting the 

areas of the input image that were most influential in the model’s classification 

decision. This visualization technique not only highlights the areas of interest 

within the medical images but also provides insights into how genomic data and 

clinical information contribute to the diagnostic process. 

The ability to visualize the model’s focus areas fosters greater trust among medical 

professionals, enabling them to make more informed decisions when discussing 

diagnoses and treatment options with patients. By providing this level of 

transparency, Grad-CAM++ enhances the model’s inter- pretability and supports 

the identification of relevant features that drive clinical interpretations. 

Factors Contributing to Model Success 

The exceptional performance of our ViT-based model can be attributed to several 

key factors: 

The use of a pre-trained ViT-B16 model allowed us to leverage powerful image 

recognition capabilities that have been developed through extensive training on 

large- scale datasets. This transfer learning approach signifi- cantly enhanced our 

model’s ability to extract relevant features from medical images, thereby improving 

overall classification performance. 

We employed a variety of data augmentation techniques, including rotation, scaling, 

and flipping. These methods played a crucial role in addressing class imbalance 

within our dataset, effectively reducing bias and enhancing the model’s ability to 

generalize to new, unseen data. By exposing the model to a wider range of image 

variations during training, we improved its robustness and overall performance. 

Our model’s success can also be attributed to its ability to integrate and analyze 

multiple data modalities, including medical imaging, genomic data, and clinical 

information. This holistic approach allows for a more comprehensive 

understanding of each case, leading to more accurate and reliable predictions. 

The incorporation of attention mechanisms within our model architecture allowed 

it to focus on the most rel- evant parts of the input data. This ability to prioritize 

important features and regions within medical images 

significantly contributed to the model’s high performance in disease classification 

tasks. 

As demonstrated in our ablation study, the use of ensem- ble techniques further 

enhanced our model’s performance. By combining predictions from multiple model 

variants, we were able to leverage the strengths of different ap- proaches, resulting in 

more robust and accurate overall predictions. 

 

Qualitative Analysis 

In addition to our quantitative evaluations, we conducted a comprehensive 

qualitative study to assess the effectiveness of our developed multi-modal deep 

learning architecture for gastrointestinal (GI) disease diagnosis and risk stratification. 

This analysis focused on the integration of medical imaging, genomic data, and 

clinical information, providing valuable insights into the architecture’s capability to 

enhance diagnostic accuracy and uncover underlying mechanisms of GI diseases. 

Key findings from our qualitative analysis include: 

The multi-modal architecture demonstrated a remarkable ability to synthesize diverse 

data sources, leading to significantly improved diagnostic accuracy across mul- tiple 

GI diseases. Clinicians reported that this integrated approach provided a more holistic 

view of patient health, facilitating more informed decision-making in both diag- nosis 

and treatment planning. 

The implementation of attention mechanisms and visu- alization techniques like Grad-

CAM++ significantly en- hanced the model’s interpretability Medical professionals 
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were able to visualize which features—such as specific imaging regions or genomic 

variants—were most influen- tial in the model’s predictions. This transparency not 

only improved clinicians’ trust in the model but also facilitated more meaningful 

discussions with patients about their diagnosis and treatment options. 

When validated on a large, diverse dataset encompassing various GI diseases, our 

multi-modal model consistently outperformed existing single-modality approaches. 

Clin- icians observed that the model’s predictions were more consistent and closely 

aligned with clinical observations, highlighting its potential as a valuable tool in real-

world clinical settings. 

The qualitative feedback emphasized the model’s utility in identifying complex cases 

where single-modality ap- proaches may have failed. This capability is particularly 

valuable in the diagnosis of rare or atypical presentations of GI diseases, where 

multiple data sources can provide crucial contextual information. 

Feature importance analysis revealed that our multi- modal model successfully 

identified several novel biomarkers and risk factors for GI diseases. Insights derived 

from the integration of genomic data and clinical parameters were particularly notable, 

as they uncovered correlations that were previously unrecognized in the field. 

Clinicians were so excited that these results would eventually contribute to future 

investigations and trials in the design of such targeted therapy. 

Our proposed architecture for multi-modal deep learning is effective not only in the 

diagnosis of GI diseases and their stratification of risk but also in providing greater 

interpretabil- ity together with potentially new biomarkers. Results such as these 

are therefore very promising toward showing that the integration of multiple data 

modalities can significantly advance the field of gastroenterological medicine to 

improve patient outcomes. 

The results below, which reflect both quantitative and qual- itative analyses, 

promise a robust basis for the superiority of the ViT-based model in the diagnosis 

and risk stratification of gastrointestinal disease. Superior performance on all met- 

rics, enhanced interpretability, and novel discovery capabilities place the model 

strongly at the forefront in the development of precision medicine in 

gastroenterology. 

 

DISCUSSION 

The developed ViT model, especially its variant ViT-B16, shows promising and 

informative performance in gastroen- terological disease detection on the Curated 

Colon Dataset (CCD). Our findings demonstrate that the ViT model achieved a 

remarkable accuracy of 99.5%, outperforming significantly when benchmarked 

against the traditional CNNs: ResNet at 91.3% and EfficientNet at 92.5%. This 

suggests that the ViT model is exceptionally accurate and that transformer 

architectures are full of promise for medical image analysis, since depicting the 

subtle or complex patterns in data can be critical to proper diagnosis of medical 

imagery. 

The quantitative evaluation especially reveals a continual increase in the accuracy 

of the model as epochs of training continue.As illustrated in Figure 2, the model’s 

performance stabilized at a high accuracy level by the 10th epoch, indicating 

effective learning from the dataset with minimal signs of overfitting. This is a 

critical consideration in medical imag- ing, where overfitting can lead to unreliable 

predictions and potentially harmful consequences for patients. The training 

accuracy being in line with validation accuracy reinforces the model’s 

generalizability to unseen data, a vital aspect for clinical applications where 

datasets may vary significantly in composition. 

The loss curve presented in Figure 3 further corroborates the model’s robust 
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learning process. The consistent decline in loss across epochs signifies that the 

ViT model was not only minimizing errors but doing so effectively without de- 

viating significantly between training and validation losses. This stability suggests 

that the cross-entropy loss function was optimally guiding the model toward 

accurate predictions, em- phasizing its importance in medical contexts where 

precision is paramount. 

Another noteworthy aspect of our findings is the analysis provided by the 

confusion matrix (Figure 4), which revealed a high rate of true positives coupled 

with a low false negative rate. In the context of gastroenterological disease 

detection, where missing a diagnosis can have severe ramifications, this is 

particularly encouraging. The model’s precision and recall metrics further solidify 

these findings, suggesting that the ViT model is both sensitive in identifying true 

disease cases and specific enough to limit false positives.This balance is important 

as it helps in a reduced number of unnecessary follow-up procedures due to false 

alarms. 

The second point is that given the area under the receiver op- erating characteristic 

curve of 0.99 for the ViT model, it shows an excellent capability to differentiate well 

between classes, especially in the case of the healthy class. This performance will 

come in very handy for multi-class disease classification problems, where the 

difference between minute variations of medical conditions is the difference between 

diagnosis and treatment. The high F1-score at 97.8% demonstrates how good the 

model is in general with performance across multiple evaluation metrics that could be 

very well-suited for clinical applications. 

While these results are promising, several limitations de- serve discussion. One major 

concern here is that the model per- forms relatively worse on minority classes in the 

dataset.While the ViT model demonstrated superior performance in general, certain 

minority classes exhibited inconsistent classification results, primarily due to the 

imbalanced nature of the CCD. This limitation highlights the need for more 

sophisticated data augmentation techniques and possibly the implementa- tion of 

class-weighted loss functions in future iterations to address these discrepancies. 

Ensuring that all classes are well- represented and accurately classified is essential for 

real-world applicability, particularly in diverse clinical settings. 

Additionally, while the model showed excellent discrimina- tory ability overall, the 

slightly lower AUC for cancer classi- fications indicates that there remains room for 

improvement. Differentiating early-stage cancer from benign polyps poses a 

significant challenge, and this suggests the necessity for larger, more diverse datasets 

that encompass a wider array of disease presentations. As such, enhancing the dataset 

could improve the model’s robustness and reliability in clinical scenarios, ultimately 

leading to better patient outcomes. 

Real-world clinical validation is another critical consider- ation that remains to be 

addressed. Although our results are compelling, the true test of the model’s efficacy 

will occur within clinical environments where variables such as patient demographics, 

and varying imaging techniques can impact diagnostic performance. Hence, engaging 

in thorough clinical trials is imperative to confirm the model’s utility and to fine- tune 

its performance for practical applications. 

 

CONCLUSION & FUTURE WORKS 

The research successfully demonstrated the effectiveness of the VitB16-based model 

for predicting gastroenterologi- cal diseases, outperforming traditional models such 

as SVM and decision trees, as well as more advanced architectures like CNN and 

LSTM. The model achieved high accuracy, precision, recall, and F1-scores, indicating 

its capability to generalize well across diverse disease types while minimizing false 
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positives and negatives. The attention mechanism within the VitB16 model allowed it 

to focus on the most critical features, leading to robust performance even on complex 

medical datasets, making it an excellent candidate for clini- cal application in disease 

prediction and informed decision- making. Additionally, the use of this advanced 

approach 

aligns with the growing need for diagnostics that can detect subtle anomalies 

within medical images and predict patient outcomes effectively. The integration of 

multimodal image fusion and clinical data could further address the challenges of 

classification and improve clinical interpretability. 

Future improvements can focus on increasing the dataset size, particularly for rare 

gastroenterological diseases, which would help address the model’s slightly lower 

performance on these conditions. Additional data sources such as ge- netic 

markers or patient history might be integrated in the model to enhance 

discriminatory power,improving detection of subtle anomalies and supporting 

explainable AI approaches essential for clinical interpretability and ethical 

considerations in diagnostics. More so, enhancement of performance could be 

achieved by considering other attention-based models or hybrid architectures. Such 

enhancements will not only enhance accuracy but also make the possibility of 

deploying the model within a real-world health system, where early and accurate 

disease prediction can reduce the effects disease has on patients. 

 

REFERENCES 

T Vos, S. Lim, C Abbafati, K. Abbas, M Abbasi, M Abbasifard, et al., “Gbd 2019 

diseases and injuries col- laborators,” Global burden of, vol. 369, pp. 1990–

2019, 2020. 

S. C. Ng, H. Y. Shi, N. Hamidi, et al., “Worldwide incidence and prevalence of 

inflammatory bowel disease in the 21st century: A systematic review of 

population- based studies,” The Lancet, vol. 390, no. 10114, 

pp. 2769–2778, 2017. 

P. Zhang, W. Dong, and K. Yang, “Spatial clustering of gastrointestinal diseases 

in middle-aged and elderly chinese based on cross-sectional data,” in 2020 

Interna- tional Conference on Public Health and Data Science (ICPHDS), 

IEEE, 2020, pp. 94–98. 

A. F. Peery, S. D. Crockett, C. C. Murphy, et al., “Burden and cost of 

gastrointestinal, liver, and pan- creatic diseases in the united states: Update 

2018,” Gastroenterology, vol. 156, no. 1, pp. 254–272, 2019. 

W. Schultz, C. Monast, M. Hesse, et al., “Analysis of integrated inflammatory 

bowel disease mouse models to assess their disease driving pathways and 

relevance for crohn’s disease and ulcerative colitis,” in 2018 IEEE 

International Conference on Bioinformatics and Biomedicine (BIBM), IEEE 

Computer Society, 2018, 

pp. 2806–2807. 

G. G. Kaplan and S. C. Ng, “Understanding and pre- venting the global increase of 

inflammatory bowel dis- ease,” Gastroenterology, vol. 152, no. 2, pp. 313–

321, 

2017. 

P. Singh and P. Chakurkar, “Deep learning based wire- less capsule endoscopy for 

small intestinal lesions de- tection and personalized treatment pathways,” in 

2023 14th International Conference on Computing Communi- cation and 

Networking Technologies (ICCCNT), IEEE, 2023, pp. 1–8. 

C. Abraham, P. S. Dulai, S. Vermeire, and W. J. Sand- born, “Lessons learned from 

trials targeting cytokine pathways in patients with inflammatory bowel diseases,” 



 

 Page 119  

Gastroenterology, vol. 152, no. 2, pp. 374–388, 2017. 

S. Zeissig, B.-S. Petersen, M. Tomczak, et al., “Early- onset crohn’s disease and 

autoimmunity associated with a variant in ctla-4,” Gut, vol. 64, no. 12, pp. 1889–

1897, 2015. 

A. Bilal, F. Tanvir, S. Ahmad, S. H. A. Shah, H. A. Ahmad, and N. Kanwal, "Pre-

clinical study of the bioactive compound Asiaticoside against the proteins 

inducing human mammary carcinoma using molecular docking and ADME 

analysis," Remittances Rev., vol. 9, no. 2, pp. 3543–3576, 2024. 

F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global 

cancer statistics 2018: Globocan estimates of incidence and mortality world- 

wide for 36 cancers in 185 countries,” CA: a cancer journal for clinicians, vol. 

68, no. 6, pp. 394–424, 2018. 

S. V. Lynch and O. Pedersen, “The human intestinal mi- crobiome in health and 

disease,” New England journal of medicine, vol. 375, no. 24, pp. 2369–2379, 

2016. 

J. Escobar, K. Sanchez, C. Hinojosa, H. Arguello, and S. Castillo, “Accurate deep 

learning-based gastrointestinal disease classification via transfer learning 

strategy,” in 2021 XXIII symposium on image, signal processing and artificial 

vision (STSIVA), IEEE, 2021, pp. 1–5. 

H. Zheng, H. Chen, J. Huang, X. Li, X. Han, and J. Yao, “Polyp tracking in video 

colonoscopy using optical flow with an on-the-fly trained cnn,” in 2019 IEEE 

16th international symposium on biomedical imaging (ISBI 2019), IEEE, 2019, 

pp. 79–82. 

G. Urban, P. Tripathi, T. Alkayali, et al., “Deep learning localizes and identifies polyps 

in real time with 96% accuracy in screening colonoscopy,” Gastroenterology, 

vol. 155, no. 4, pp. 1069–1078, 2018. 

A. K. Waljee, B. Liu, K. Sauder, et al., “Pre- dicting corticosteroid-free 

endoscopic remission with vedolizumab in ulcerative colitis,” Alimentary 

pharma- cology & therapeutics, vol. 47, no. 6, pp. 763–772, 

2018. 

A. Esteva, K. Chou, S. Yeung, et al., “Deep learning-enabled medical computer 

vision,” NPJ digital medicine, vol. 4, no. 1, p. 5, 2021. 

P. Kroner, M. Engels, and B. Glicksberg, “Ohnson, kw, mzaik, o,” Hooft,. E. an, 

Krittanawong, C, pp. 6794– 6824, 2021. 

D. Ho, I. B. H. Tan, and M. Motani, “Predictive mod- els for colorectal cancer 

recurrence using multi-modal healthcare data,” in Proceedings of the 

Conference on Health, Inference, and Learning, 2021, pp. 204–213. 

G. Litjens, T. Kooi, B. E. Bejnordi, et al., “A survey on deep learning in medical 

image analysis,” Medical image analysis, vol. 42, pp. 60–88, 2017. 

K. He, X. Zhang, S. Ren, and J. Sun, “Deep resid- ual learning for image 

recognition,” in Proceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), 2016, pp. 770–778. 

T. Ghosh, S. K. Bashar, S. A. Fattah, C. Shahnaz, and 

K. A. Wahid, “A feature extraction scheme from region of interest of wireless capsule 

endoscopy images for automatic bleeding detection,” in 2014 IEEE Interna- 

tional Symposium on Signal Processing and Information Technology (ISSPIT), 

IEEE, 2014, pp. 000 256–000 260. 

K. Simonyan and A. Zisserman, “Very deep convo- lutional networks for large-scale 

image recognition,” arXiv preprint arXiv:1409.1556, 2014. 

C. Pooja, M Nagaraju, S. R. Reddy, and P. Nikhila, “Cnn-based classification of 

gastrointestinal diseases us- ing support vector machine,” in 2024 5th 

International Conference on Image Processing and Capsule Networks 



 

 Page 120  

(ICIPCN), IEEE, 2024, pp. 361–369. 

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” 

nature, vol. 521, no. 7553, pp. 436–444, 2015. 

N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, et al., “Convolu- tional neural networks for 

medical image analysis: Full training or fine tuning?” IEEE transactions on 

medical imaging, vol. 35, no. 5, pp. 1299–1312, 2016. 

C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep 

learning,” Journal of big data, vol. 6, no. 1, pp. 1–48, 2019. 

O. F. Ahmad, A. S. Soares, E. Mazomenos, et al., “Artificial intelligence and 

computer-aided diagnosis in colonoscopy: Current evidence and future 

directions,” The lancet Gastroenterology & hepatology, vol. 4, no. 1, 

pp. 71–80, 2019. 

S. Ren, J. Sun, K. He, and X. Zhang, “Deep residual learning for image 

recognition,” in CVPR, vol. 2, 2016, 

p. 4. 

V. Patel, K. Patel, P. Goel, and M. Shah, “Classification of gastrointestinal diseases 

from endoscopic images using convolutional neural network with transfer 

learn- ing,” in 2024 5th International Conference on Intelli- gent 

Communication Technologies and Virtual Mobile Networks (ICICV), IEEE, 

2024, pp. 504–508. 

I. M. Dheir and S. S. Abu-Naser, “Classification of anomalies in gastrointestinal 

tract using deep learning,” 2022. 

R. Z. Ahmad, M. A. Khan, S. Ali, T. Rehman, and M. I. Malik, "Effect of locus of 

control and depression among young adults in Multan (Pakistan)," J. Asian Dev. 

Stud., vol. 12, no. 4, pp. 684–692, 2023. (Assuming five authors, adjust names if 

needed.) 

A. Bilal, A. Iqbal, A. Rauf, A. Ali, and A. R. Azam, "Top outbreaks of 21st century: a 

review," Palliat. Med. Care Int. J., vol. 4, no. 2, p. 555632, Sep. 2021. 

A. Bilal, "Impacts of depression on pregnancy: A review," Occup. Med. Health Aff., 

Jan. 2021. 
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