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The early detection of gastroenterological dis- eases can
improve both outcomes for patients and reduce the burden
of diagnosis at late stages. Traditional models, including
CNNs, have been limited in capturing complex patterns
within medical imaging analysis datasets, resulting in the
investigation into transformer architectures, such as the
Vision Transformer, or ViT. However, the use of ViT
models in medical image analysis for gastroenterological
disease detection remains relatively underexplored. This
study is intended to evaluate the effectiveness of the ViT-
B16 variant in predicting patient outcomes and detecting
subtle anomalies using the Curated Colon Dataset, or CCD.
This dataset was trained and tested using the transformer-
based model and also compared the performance of tra-
ditional CNNs. The ViT-B16 reached the result of 99.5%
accuracy, while ResNet and EfficientNet reached 91.3%
and 92.5% accuracies, respectively. Precision, recall, and
AUC had high values; in this case, the AUC was estimated
to be around 0.99, which indicates accurate discrimina-
tion between classes of diseases. Hence, the obtained
results demonstrate that the ViT-B16 model has poten- tial
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for the medical diagnostics task,particularly classifi- cation and prediction of patient
outcomes, with possible applicability in real-world clinical settings,where informed
decision-making,explainable Al approaches, clinical inter- pretability remain
essential. However, challenges, such as clinical data integration and ethical
considerations in diag- nostics, alongside the need for multimodal image fusion and
improvements in diagnostics within minority classes, emphasize areas for future work.

Introduction

Gastrointestinal diseases are all the diseases of the gas- trointestinal system from
the esophagus to the rectum; these have far-reaching impacts globally in terms of
morbidity and mortality, for the diseases affect millions of individuals around the
globe [1]. The rising incidence of GI disorders, in addition to their complex
pathophysiology, has made them a point of much concern in medical research and
clinical practice.[2][3]. It is also well known that the cost burden to healthcare
systems from Gl disease is in the billions of dollars annually [4].

In the entire spectrum of Gl diseases, inflammatory bowel diseases, or IBDs such
as Crohn’s disease and ulcerative colitis have become prominent because of their
chronic nature and increasing prevalence all over the world as conditions of
specific concern[5][6]. The disorders are characterized by chronic inflammation of
the gastrointestinal tract and arise in the form of abdominal pain, diarrhea, and
loss of weight

[7] [8]. Etiology of IBD is multifactorial based on genetic predisposition,
environmental factors, and immune system dysregulation making classification
challenging [9]. Another related factor to be concerned about is the rising incidence
of gastrointestinal cancers, particularly colorectal cancer; hence, early detection
and prevention strategies are a challenge in medical diagnostics[10]. The intricate
interrelation between the gut microbiome and various Gl diseases has become an
area of interest and has opened new avenues into diagnostic and therapeutic
approaches [11].

Deep learning techniques have increasingly been applied over the last couple of
years to Gl disease diagnosis and management[12]. Application of Convolutional
Neural Net- works has been promising in automating polyp detection in
colonoscopy images and videos[13]. Early detection of cancer is permitted through
this [14]. Recurrent neural networks have been used in the study of the timeseries
nature of electronic health records in an attempt to predict the course of disease
in IBD patients [15]. Even though promising studies have been seen relating to
deep learning in Gl medicine, further generalization of such studies is challenging
due to small datasets, poor patient diversity, and interpretability challenges in such
complex models [16]. Most of the studies concentrate on single modalities,
specifically either only on imaging data or only clinical data, which may miss
important cross-modal interactions [17].

Despite the advances made in deep learning applications for Gl diseases, there is still a
deep sense that such an approach needs to have comprehensive and multi-modal
integration of different types of data to better relate to diagnostic accu- racy and
appropriate treatment planning. The baseline paper positioned the possibility of
combining imaging, genomic, and clinical data in Gl disease management but
strongly emphasized challenges in effective integration of such diverse data types
[18]. The proposed multi-modal deep learning framework will bridge this knowledge
gap by offering en- hanced diagnosis, risk stratification, and treatment planning for a
range of Gl diseases.

The objectives of this research are:

To develop a multi-modal deep learning architecture that integrates medical imaging,
genomic data, and clinical information for comprehensive Gl disease diagnosis and
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risk stratification.

To implement attention mechanisms and explainable Al techniques to enhance the
interpretability of the deep learning model.

To validate the performance of the proposed model on a large, diverse dataset
encompassing multiple GI diseases and compare it with existing single-modality
approaches.

To investigate the model’s ability to identify novel biomarkers and risk factors for Gl
diseases through feature importance analysis.

This research contributes to both Gl diseases and deep learn- ing in several ways. It
introduces a novel multi-modal deep learning architecture that effectively integrates
diverse data types for comprehensive Gl disease management, something addressed
by the limitations of single-modality approaches. In addition, attention mechanisms
and explainable Al techniques will be incorporated to enhance the interpretability of
the model, making it potentially more clinically applicable and trustworthy. Thirdly,
validation of large and heterogeneous dataset allows excellent evidence of
generalizability and model performance for different GI conditions. Finally, feature
im- portance analysis may identify new biomarkers and potential risk factors for Gl
diseases, thereby deepening our insight into the pathogenesis of disease and possible
therapeutic targets.

The rest of this paper follows: Section 2 describes an in- depth review of the literature
concerning the applications of deep learning in GI diseases, multi-modal learning
approaches, and the latest diagnostic and treatment strategies used. Sec- tion 3
elaborates on methodology: preparation of data and preprocessing, the proposed
multi-modal deep architecture, and explainable Al implementation. Section 4 presents
the results of the study, including model performance metrics, comparisons with
existing approaches, and insights from the explainable Al analysis. Section 5
discusses the implications of the findings, their potential clinical applications, and
lim- itations of the study. Finally, Section 6 concludes the paper and outlines future
research directions.

This research proposes a novel multi-modal deep learning framework for
comprehensive gastrointestinal disease diag- nosis, risk stratification, and treatment
planning, integrating medical imaging, genomic data, and clinical information to
overcome the limitations of single-modality approaches and improve diagnostic
accuracy and interpretability across a spec- trum of GI conditions.

METHODOLOGY

Here, we explain the methodology adapted in developing our disease prediction
model. We followed the architecture of ViT, and it was trained and validated on a
large comprehensive dataset. It includes data preprocessing, training, and evalua- tion
of the model along with optimizing its performance for accuracy and efficiency.
Additionally, we compared the ViT model’s results with other state-of-the-art
methods, including CNN and ResNet, to highlight its superior performance in this
medical application.

Baseline Paper

The baseline method presented in the paper [48] focuses on utilizing the Vision
Transformer (ViT) model for medical image classification, specifically on
radiological image on chest X-ray and gastrointestinal datasets[49][50]. The authors
demonstrate how the transformer-based architecture surpasses traditional CNNs in
handling complex, multi-class image classification tasks[51]. Their methodology
emphasizes the importance of self-attention mechanisms in learning relevant image
features, providing a basis for comparison with CNN models. The transformer’s
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performance, especially on im- balanced datasets, serves as a breakthrough
benchmark for improving model efficiency in medical diagnostics.

Our proposed methodology builds upon this approach by in- tegrating ViT for
gastrointestinal disease prediction, enhancing the feature extraction capability and
performance on diverse medical datasets[52].

Our methodology differs from the baseline approach by re- fining the VIiT model to
focus more on gastrointestinal disease classification, leveraging additional
preprocessing techniques to improve feature extraction from complex medical images.
While the baseline emphasizes general medical image clas- sification, we enhance
the training process by incorporating advanced augmentation strategies to address
class imbalance and improve model robustness. Additionally, we evaluate our model
against multiple metrics, including precision, recall, and F1-score, to provide a more
comprehensive understanding of its effectiveness in real-world diagnostic
scenarios.Our approach aligns with Explainable Al approaches to ensure clinical
interpretability and considers ethical implications rel- evant to diagnostics[53].

Model Selection

The proposed methodology uses a Vision Transformer (ViT) model[54], It is a
novel variant of deep learning that replaces the convolution layers that have
traditionally been stacked in CNNs with a self-attention mechanism. Thus, the VIiT
model processes an image as a sequence of patches and attends both to local and
global image features, making it very suitable to complex medical images where
key diagnostic information might be scattered throughout an image. Contrary to
CNNs, where the traditional task focuses on local regions due to small receptive
fields, an architecture such as the transformer enables better feature representation
throughout the image. Applications of ViT in medical image classification become
more popular nowadays since it can handle spatial dependencies more robustly,
and the performance gains over conventional CNNs have been achieved in a
number of image classification domains. We use a variant of ViT-B16 with this
study, pre-trained on ImageNet and fine-tuned on the medical image dataset
focused on gastrointestinal diseases[55].

Why we use this model?: The Vision Transformer (ViT) model is used due to its
ability to effectively capture complex patterns in medical images through its self-
attention mecha- nism, which processes images as sequences of patches. This
allows the model to attend to both local and global features, making it particularly
well-suited for medical image analy- sis, where critical diagnostic information may
be distributed throughout the image. VIiT has shown superior performance
compared to traditional convolutional neural networks (CNNSs) in handling multi-
class classification tasks and dealing with imbalanced datasets, making it a
valuable choice for appli- cations in medical diagnostics and the detection of subtle
anomalies in radiological images. Additionally, its architecture facilitates better
feature representation, enhancing the model’s capability to make informed
decisions and improve patient outcomes.

Data Acquisition

This research used the Curated Colon Dataset for Deep Learning[56] ,which is widely
applied in medical image analysis in general. The selected images within this dataset
originated from high-quality colonoscopy images, representing various gastrointestinal
diseases: healthy tissues as well as abnormal findings such as polyps and cancers.
Images in this dataset fall into several classes that correspond to different conditions.
This part proves to be crucial in the fine-tuning of deep models since it captures
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variance in disease presentation among patients. Splitting into training, validation, and
test sets ensures that model evaluation will be robust.

The dataset is extracted from a public repository hosted on Kaggle, curated explicitly
for research into gastroin- testinal disease detection.

The dataset consists of approximately 5,000 images, with 60% used for training, 20%
for validation, and 20% for testing. Each image is labeled according to its respective
category, allowing the model to learn the differences between healthy and diseased
tissues.

Each image in the dataset is a high-resolution RGB image capturing internal
colonoscopy views[57]. These images vary in size but are normalized during
preprocessing to a fixed input dimension suitable for the ViT model.

The dataset exhibits significant intra-class variability, which makes it a challenging
dataset. Variations in light- ing, camera angles, and tissue appearance are common,
necessitating a robust model capable of generalizing well

model. It brings with it the promise of continuity across all images and enables
effective model training.

The images are resized to 224 x 224 dimensions: Math- ematically, it can be
expressed as:

x'esized = resize(xi, 224, 224) _

Normalization of Pixel Values of Images To stabilize the model at the training
stage, pixel values are normalized to the range [0, 1]. In particular, as ViT was
originally trained on the ImageNet dataset, it normalizes images based on the mean
and standard deviation of the Ima- geNet dataset.

It can be expressed mathematically as:

Each pixel value of the resized image is normalized to the range [0, 1]:

xresized HImageNet _
to new cases. This dataset will help evaluate the proposed VIT model’s ability to
generalize across different patient

xhorm — i

clmageNet

samples and disease states, contributing to the research’s primary aim of improving
diagnostic accuracy in gas- trointestinal diseases.

Why we use this dataset?: The Curated Colon Dataset is ideal for gastrointestinal
disease detection research due to its high-quality, clinically relevant images
representing various conditions, such as polyps and cancers. With approximately
5,000 images, it offers a substantial dataset for effective training and validation,
enhancing model

where Himagenet and Gimagenet are the mean and standard

deviation of pixel values from the ImageNet dataset.

To prevent overfitting, data augmentation techniques such as random horizontal
flipping, rotation, and slight crop- ping are applied to the training dataset. This
artificially increases the dataset size and provides the model with varied image
perspectives, which helps the model gener- alize better.

This can be represented mathematically as:

generalization. The dataset’s focus on real clinical cases

au ensures applicability in diagnostic scenarios, making it a robust foundation for
improving predictive accuracy in

Xi = AX| )

Thus, the final preprocessed dataset is:

gastrointestinal disease detection.

’ aug
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Fig. 2. Dataset sample image

Preprocessing

Data preprocessing is a crucial step in preparing the raw images for input into the ViT
model. The following prepro- cessing strategies are applied to the dataset.
Mathematically it can be written as:

Let X= X1, X2, ..., Xn represent the dataset, where X; is the i-th image and n
is the total number of images. Each image Xx; is an RGB image with arbitrary
resolution. After preprocessing:

. The images are loaded in batches of 32 during training, which helps make the
training process more efficient and less memory-intensive.

This can be represented mathematically as: B = X1, X2, . . ., Xa2

where x;i X { } €
This equation represents:

- B: A batch of images

- Xi: An individual image in the batch

- X: The entire dataset of images

- 32: The batch size

Model Architecture

The architecture of the Vision Transformer (ViT) model used in this research is
structured as follows:

The Patch Embedding Layer divides each input image into 16x16 pixel patches,
which are then flattened and linearly embedded into a vector space. This layer
serves as the input processing stage, converting the image into a format that the
transformer can process.

It can be mathematically expressed as:

Each input image x2“9mented js split into patches of size pxp (here p = 16). For an
image of dimensions HxXW = 224 x 224, the number of patches N is:

The Image Resizing process resizes all images to 224x224 pixels for the input
dimensions of the ViT-B16

N = H*xW
p2
_224% 224 _ oo
162
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Each patch Pj is flattened into a vector and linearly projected into a feature
space of dimension D using a projection matrix Wp:

The learning rate a: at epoch t is dynamically ad- justed using a learning rate
scheduler (e.g., ReduceLROn- Plateau), based on the validation loss Lva. The
update rule is defined as:

zj = Wy, - flatten(Pj), j=1,2,...,N

ot+1

(

— ot, if Lval,t+1 < Lval,t

Positional Encoding is added to the input embeddings since transformers do not have
any inherent understand- ing of the spatial relationships between patches. This
encoding provides information about the relative position of each patch.
Mathematically it is written as:

Positional embeddings Epos are added to each patch embedding z;:

v o, If Lvalt+1 Lvai,t for a patience period of p epochss

where v is the learning rate decay factor (typically y < 1) and the learning rate is
reduced if the validation loss does not improve for p consecutive epochs.

A batch size of 32 was chosen to balance computational efficiency and memory
usage.

This can be formulated in mathematically as: The batch size B is set to

32:

2PO8 = 7j + Eposj

The Transformer Encoder forms the core of the model, consisting of a series of
encoder layers that include multi-head self-attention mechanisms and feed-forward
networks. The attention mechanism enables the model to attend to different parts of
the image globally, ensuring that long-range dependencies are captured.
This can be formulated mathematically as:
The sequence of patch embddgings zP* is passed through L layers of transformer
blocks. Each block contains a multi-head self-attention mechanism (denoted as MSA)
and a feed-forward network (FFN).
Multi-head self-attention:

T
MSA (g k v)= W%;e.ftmax QK
k
where Q, K, and V are the query, key, and value matrices of dimension dx.
The Classification Head is added to the model after the transformer layers, consisting
of a fully connected layer that maps the final representation to the disease classes. The
number of output neurons corresponds to the number of classes in the dataset (e.g., 5
classes representing different gastrointestinal conditions).
It can be expressed mathematically as:
The output embeddings from the last transformer layer
z(® are passed through a fully connected layer Ws. to
B =32
Batches is applied to balance computational efficiency and memory usage during
training.
The model was trained for 10 epochs, with early stop- ping applied to prevent
overfitting. Early stopping was triggered if the validation accuracy did not
improve for 5 consecutive epochs.
Mathematically it can be expressed as:
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The model was trained for a maximum of 10 epochs. Early stopping was applied to
prevent overfitting, and training was halted if the validation accuracy did not
improve for p = 5 consecutive epochs.

Let Avait represent the validation accuracy at epoch t. The early stopping condition
IS given by:

Stop training if Avait < Avae—p for p =5 epochs Epochs = 10

The Adam optimizer was used, which is well-suited for models with large numbers
of parameters due to its adaptive learning rate capability.

It can be expressed in mathematically as:

The Adam optimizer is used to minimize the loss func- tion. The parameter updates
are:

Mt

predict the class probabilities:

Ot+1 =6t —a -

Vite

yi = softmax(Ws. - zV)

where z(1 is the embeddifi§ corresponding to the special classification token.

CLS

Implementation Details

The model was implemented using PyTorch, and the fol-

where m ¢ and v" are the biased-corrected estimates of the first and second

moments of the gradient at time step t, and a is the learning rate.

- Cross-entropy loss was employed as the loss function, which is appropriate

for multi-class classification tasks. It can be formulated in mathematically as:

For multi-class classification, the loss function used is cross-entropy loss:

lowing training parameters were used: — n
== c

The model was trained with a learning rate of 1e-4, which was dynamically adjusted

using a learning rate scheduler

L = 1 y

n
i=1 c=1

I,C

log yic

(ReduceLROnPlateau) based on validation loss. This can be written in
mathematically as:

The initial learning rate is denoted by oo =1 x 107,

where vyic is the true label (one-hot encoded), y"ic is the predicted probability
for class c, and C is the number of classes.
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The model was trained on a single GPU for faster computation. During each epoch,
the model passed over the entire training dataset and adjusted its parameters to
minimize the loss. In each epoch, the model was evaluated on the validation set. The
best model, found with the highest validation accuracy, was then saved. Finally, the
model was validated on the test set: the model performed satisfactorily and has good
potential for application in a clinical setting evidenced by the accuracy, confusion
matrices, and ROC curves.

RESULTS

This section will compare the performance of the ViT model on a curated colon
dataset (CCD) against the related established CNNs like ResNet and DenseNet. In this
section, major metrics such as accuracy, loss, confusion matrices, and ROC curves are
used for the study to evaluate the effectiveness of the VIiT model for performing
gastrointestinal disease detection. This analysis aims to allow for a finer understanding
of the abilities of VIT in this critical medical domain, exposing the strengths and
limitations it may bring with itself compared to the architectures of typical CNNs. The
synthesis of these quantitative measures together provides an insight into how the
model might be performing in terms of overall performance, discrimination ability
between potentially different conditions in the colon, and then its possible application
to clinical diagnostic support systems.

Ablation Studies

With the comprehensive ablation study, we deepen our understanding about the
performance of our model and which component is most contributing. For this
work, an extensive ablation study was performed to compare various model
variants on a set of key performance metrics: the F1 score, precision, recall, and
accuracy. As might be intuited by the reader, these results are also available in
Table I where a more explicit comparison of their performance on various model
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configurations is available.

TABLE | ABLATION STUDIES

Model Variant F1 score |Precision |Recall |Accuracy
Full Model 0.978 0.980 0.982  0.995
Multi-Scale Inputs 0.920 0.915 0.925 |0.930
Attention Mechanism  [0.915 0.910 0.920 0.925
Ensemble Model 0.930 0.925 0.935 0.940

Scores

Our primary benchmark is Full Model, which surpasses all the measures by any
margin. We manage to obtain an F1 score of 0.978, precision of 0.980, recall of
0.982, and accuracy of 0.995. These results present evidence of the effectiveness of
our full-bodied approach that includes all the improvements and optimizations we
have developed.

The Multi-Scale Inputs variant shows dramatic improvement

, reaching an F1 score of 0.920,although it is short of that to be reached by the
full model . This was an indication that

including multi-scale inputs greatly enhances the effectiveness of the model in
performing a good classification. It means that in permitting the analysis of images at
more than one scale, the model is capable of detecting fine-grained aspects of the
image as well as global contextual information to generate a far better and accurate
classification.

Similarly, the Attention Mechanism variant does well with an F1 value of 0.915.
Although it is short of that to be reached by the full model or the multi-scale inputs
variant, this does imply that adding the attention mechanism increases performance.
The model is given the ability to focus its attention on the most informative parts of
the input through the attention mechanism, which may be why it improves the ability
to identify more relevant features for the classification task.

The Ensemble Model obtains, finally, an F1 score of 0.930 and this suggests that
aggregation of multiple models’ pre- dictions offers a very good performance
improvement. This method, in effect, uses all the strengths of different model
configurations to obtain more robust and accurate predictions overall.

Figure 4 shows the closer view of the ablation study where the removal of features
impacts are reflected over the model performance. The key insights offered relate to
the learning dynamics and the optimization strategies in real-life scenarios the model
adopts. Visualizations help understand the contribution of the importance of each
feature towards boosting overall predicting ability.

i1.00
o.98 ™G

o.96 g

o
1]

—
W : -

i) 55

0.90
Full Model

Multi-Scale Inputs Attention Mechanism Ensemble Model

Model Variants

Fig. 4 A Model Variants Performance
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The ablation study gives a great insight into which specific important components
built into the model are necessary for improving its performance. This clearly
indicates that multi-scale inputs and ensemble techniques do indeed play an
influential role in improving classification metrics. These results indeed validate the
design choices and provide value along with optimization in the direction of
developing better models in applications related to medical image analysis.

Quantitative Analysis

The ViTB16-based model we proposed was tested exhaus- tively on the
gastroenterological disease dataset and gave highly competitive performance results.
To give a balanced assessment of its performance, we conducted an extensive
comparison with several state-of-the-art models often used in similar medical
prediction tasks. The key performance metrics used include accuracy, precision,
recall, F1-score, and AUC, which are Area Under the Curve.

Figure 5 shows more detail about the accuracy of our model for every training
epoch. A consistent increase in accuracy is observed; by the end, it stabilizes
and settles at a high level by about the 10th epoch. This is a hallmark of effective
learning when the complex patterns within this given dataset are identified and
learned without too much overfitting during training. It was challenging to balance
complexity in medical images against the variability intrinsic in any dataset, and
this is a tremendous achievement.

1.00F
OS5
.90
285
.80 |-
A5
SO

.65 |

Accuracy
0O 00 00 O 0O O

.60 [

> 5 5.0 75 10.0 12.5 15.0 175 20.
Epochs

Fig 5 Accuracy vs Epochs

Some interesting findings can be seen from the accuracy plot. Our model
performed considerably better than CNN and ResNet baselines and surpassed them
throughout all epochs. For ViTB16-based models, best validation accuracy is
obtained after each epoch, which is a proof of a good training curve without
overfitting. The training accuracy can almost be the same as validation accuracy.
This aspect is especially very important in the medical area, where false positives
and false negatives are able to bring about really harmful consequences to patient
care and outcomes.

Figure 6 provides a comprehensive view of the loss curve over the training epochs,
offering valuable insights into the model’s learning process and optimization.
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Fig 6 Loss Curve over Epochs

The loss curve was smooth and consistent with every epoch showing a decline,
thus one decent indicator that the model was learning well throughout the process
of training. Cross- entropy loss function contributed a lot toward this optimization
and significantly minimized the error between the true labels and those which were
being predicted.

This smooth and consistent fall within the curve of loss is a potent indication that the
optimization process was extremely effective. Most importantly, no pertinent
divergence between the training loss and the validation loss was noticed, which is a
very important observation. Indeed, in many cases, overfitting is characterized by a
steep fall in training loss while the validation loss plateaus or increases. The absence
of this pattern in our results provides robust evidence that our model did not overfit to
the training data.

This balanced training process strongly supports the notion that our model would
generalize well in real-world scenarios. This is a critical factor in disease prediction
models, partic- ularly in the medical imaging domain, where data can vary greatly
between cases due to factors such as image quality, patient variability, and the diverse
presentation of diseases. vary greatly between cases.

To gain deeper insights into the classification performance of our model, we
conducted a thorough analysis using a confusion matrix, as illustrated in Figure 7.

CwowoWwou

Predicted Labels

Fig. 7 Confusion matrix of model performance

The confusion matrix gives an accurate break of what the model has predicted,
showing how many are true positives, true negatives, false positives, and false
negatives. This much- complicated breakdown gives us a definite view of where the
model appears to be doing well and where it may not yet be quite right in classifying
things[58].
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Looking at the confusion matrix, we realize that our model has a high true positive
rate, which is very important in a medical scenario where successfully identifying a
positive case matters a lot. Equally important is the relatively low false negative rate,
given that missing such a positive diagnosis in a medical setting could be disastrous
both for patient care and results.

The precision and recall values obtained from the confusion matrix further support
these observations. These metrics show that our model can reach a good balance
between correctly identifying positive cases at high recall and keeping the num- ber of
false alarms to a minimum, given a high precision value. Such a balance is vital in
medical applications, where missed

diagnosis causes suboptimal patient care and unnecessary stress or intervention
from false alarms.

We ran a rigorous comparison with other state-of-the- art models such as CNN,
EfficientNet, and ResNet for this purpose. This comparison shows that our strategy
based on ViTB16 performs better than all the other approaches in all of these main
metrics.

The accuracy of our model is as high as 99.5%, which values at a much higher
level than CNN (89.7%), ResNet (91.3%), and EfficientNet (92.5%). Such
considerable in- creases in the accuracy value merely describe how well integration
of ViT models can be done into this medical application and open up new
perspectives of transformer-based architectures in medical image analysis.

The precision and recall scores of the model were just as impressive. Such high
scores indicate that this is a model not only with high sensitivity in the
identification of diseases but is sufficiently specific to avoid inclusion of false
positives. Both of the failures mentioned take place in the context of medical
applications, which have significant implications for patient care and resource
utilization.

Table Il presents a comparison of accuracy, precision, recall, F1-score, and AUC
among different models, therefore providing an in-depth view on the performance
of our model as compared with other state-of-the-art approaches.

TABLE Il

COMPARISON WITH STATE OF ART METHOD
Metric  VIT ModelCNNJ[60] [ResNet[20] [EfficientNet[61]

(Ours)[59]

Accuracy [99.5% 89.7% 91.3% 92.5%
Precision [98.0% 88.5%  90.0% 92.0%
Recall 98.2% 87.0%  91.0% 92.3%
F1-Score [97.8% 87.7%  190.5% 02.1%
AUC 99% 91% 93% 95%

Notably, our model achieved an AUC of 99%, which underlines its excellent
capability for distinguishing classes. This is extremely important in cases of multi-
class problems, especially with the specific problem at hand, which is disease
classification, because accurate distinction between diseases should lead to an
appropriate diagnosis and treatment course.

Furthermore, the F1-score of 97.8 % emphasizes the bal- anced performance of our
model on all measures where the trade-off between precision and recall is suitably
minimized. This balance is very sensitive in the clinical domains as false positives
as well as false negatives could have a serious impact on the patient’s treatment.
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Fig 8 Comparison of Performance Metrics Across Models

Besides the metrics discussed above, we did a complete analysis of the ROC Curve so
that we were able to exhibit visually the result of the classification obtained from our
model at different thresholds. Figure 8 presents our ROC curve from our ViT-based
model.

Receiver Operating Characteristic (ROC) Curve
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Fig. 9 ROC Curve of the Model

The ROC curve illustrates the model’s ability to discriminate between classes at
various classification thresholds[62]. The curve’s proximity to the top-left corner of
the plot indicates excellent classification performance, with a high true positive rate
and a low false positive rate across a wide range of thresholds.

To enhance the interpretability of our multi-modal deep learning model, we
employed Grad-CAM++ as an ad- vanced explainable Al technique. This method
generates high- resolution visual explanations that allow clinicians to under- stand
which regions of medical images most significantly influence the model’s predictions.
Fig. 10. Grad-CAM++ visualization highlighting important regions for classification.
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Figure 10 presents an example of a Grad-CAM++ visual- ization, highlighting the
areas of the input image that were most influential in the model’s classification
decision. This visualization technique not only highlights the areas of interest
within the medical images but also provides insights into how genomic data and
clinical information contribute to the diagnostic process.

The ability to visualize the model’s focus areas fosters greater trust among medical
professionals, enabling them to make more informed decisions when discussing
diagnoses and treatment options with patients. By providing this level of
transparency, Grad-CAM++ enhances the model’s inter- pretability and supports
the identification of relevant features that drive clinical interpretations.

Factors Contributing to Model Success

The exceptional performance of our ViT-based model can be attributed to several
key factors:

The use of a pre-trained ViT-B16 model allowed us to leverage powerful image
recognition capabilities that have been developed through extensive training on
large- scale datasets. This transfer learning approach signifi- cantly enhanced our
model’s ability to extract relevant features from medical images, thereby improving
overall classification performance.

We employed a variety of data augmentation techniques, including rotation, scaling,
and flipping. These methods played a crucial role in addressing class imbalance
within our dataset, effectively reducing bias and enhancing the model’s ability to
generalize to new, unseen data. By exposing the model to a wider range of image
variations during training, we improved its robustness and overall performance.

Our model’s success can also be attributed to its ability to integrate and analyze
multiple data modalities, including medical imaging, genomic data, and clinical
information. This holistic approach allows for a more comprehensive
understanding of each case, leading to more accurate and reliable predictions.

The incorporation of attention mechanisms within our model architecture allowed

it to focus on the most rel- evant parts of the input data. This ability to prioritize
important features and regions within medical images

significantly contributed to the model’s high performance in disease classification
tasks.

As demonstrated in our ablation study, the use of ensem- ble techniques further
enhanced our model’s performance. By combining predictions from multiple model
variants, we were able to leverage the strengths of different ap- proaches, resulting in
more robust and accurate overall predictions.

Quialitative Analysis

In addition to our quantitative evaluations, we conducted a comprehensive
qualitative study to assess the effectiveness of our developed multi-modal deep
learning architecture for gastrointestinal (GI) disease diagnosis and risk stratification.
This analysis focused on the integration of medical imaging, genomic data, and
clinical information, providing valuable insights into the architecture’s capability to
enhance diagnostic accuracy and uncover underlying mechanisms of Gl diseases.

Key findings from our qualitative analysis include:

The multi-modal architecture demonstrated a remarkable ability to synthesize diverse
data sources, leading to significantly improved diagnostic accuracy across mul- tiple
Gl diseases. Clinicians reported that this integrated approach provided a more holistic
view of patient health, facilitating more informed decision-making in both diag- nosis
and treatment planning.

The implementation of attention mechanisms and visu- alization techniques like Grad-
CAM++ significantly en- hanced the model’s interpretability Medical professionals
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were able to visualize which features—such as specific imaging regions or genomic
variants—were most influen- tial in the model’s predictions. This transparency not
only improved clinicians’ trust in the model but also facilitated more meaningful
discussions with patients about their diagnosis and treatment options.

When validated on a large, diverse dataset encompassing various Gl diseases, our
multi-modal model consistently outperformed existing single-modality approaches.
Clin- icians observed that the model’s predictions were more consistent and closely
aligned with clinical observations, highlighting its potential as a valuable tool in real-
world clinical settings.

The qualitative feedback emphasized the model’s utility in identifying complex cases
where single-modality ap- proaches may have failed. This capability is particularly
valuable in the diagnosis of rare or atypical presentations of Gl diseases, where
multiple data sources can provide crucial contextual information.

Feature importance analysis revealed that our multi- modal model successfully
identified several novel biomarkers and risk factors for Gl diseases. Insights derived
from the integration of genomic data and clinical parameters were particularly notable,
as they uncovered correlations that were previously unrecognized in the field.
Clinicians were so excited that these results would eventually contribute to future
investigations and trials in the design of such targeted therapy.

Our proposed architecture for multi-modal deep learning is effective not only in the
diagnosis of Gl diseases and their stratification of risk but also in providing greater
interpretabil- ity together with potentially new biomarkers. Results such as these
are therefore very promising toward showing that the integration of multiple data
modalities can significantly advance the field of gastroenterological medicine to
improve patient outcomes.

The results below, which reflect both quantitative and qual- itative analyses,
promise a robust basis for the superiority of the ViT-based model in the diagnosis
and risk stratification of gastrointestinal disease. Superior performance on all met-
rics, enhanced interpretability, and novel discovery capabilities place the model
strongly at the forefront in the development of precision medicine in
gastroenterology.

DISCUSSION

The developed ViT model, especially its variant ViT-B16, shows promising and
informative performance in gastroen- terological disease detection on the Curated
Colon Dataset (CCD). Our findings demonstrate that the ViT model achieved a
remarkable accuracy of 99.5%, outperforming significantly when benchmarked
against the traditional CNNs: ResNet at 91.3% and EfficientNet at 92.5%. This
suggests that the VIiT model is exceptionally accurate and that transformer
architectures are full of promise for medical image analysis, since depicting the
subtle or complex patterns in data can be critical to proper diagnosis of medical
imagery.

The quantitative evaluation especially reveals a continual increase in the accuracy
of the model as epochs of training continue.As illustrated in Figure 2, the model’s
performance stabilized at a high accuracy level by the 10th epoch, indicating
effective learning from the dataset with minimal signs of overfitting. This is a
critical consideration in medical imag- ing, where overfitting can lead to unreliable
predictions and potentially harmful consequences for patients. The training
accuracy being in line with validation accuracy reinforces the model’s
generalizability to unseen data, a vital aspect for clinical applications where
datasets may vary significantly in composition.

The loss curve presented in Figure 3 further corroborates the model’s robust
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learning process. The consistent decline in loss across epochs signifies that the
VIiT model was not only minimizing errors but doing so effectively without de-
viating significantly between training and validation losses. This stability suggests
that the cross-entropy loss function was optimally guiding the model toward
accurate predictions, em- phasizing its importance in medical contexts where
precision is paramount.

Another noteworthy aspect of our findings is the analysis provided by the
confusion matrix (Figure 4), which revealed a high rate of true positives coupled
with a low false negative rate. In the context of gastroenterological disease
detection, where missing a diagnosis can have severe ramifications, this is
particularly encouraging. The model’s precision and recall metrics further solidify
these findings, suggesting that the ViT model is both sensitive in identifying true
disease cases and specific enough to limit false positives.This balance is important
as it helps in a reduced number of unnecessary follow-up procedures due to false
alarms.

The second point is that given the area under the receiver op- erating characteristic
curve of 0.99 for the ViT model, it shows an excellent capability to differentiate well
between classes, especially in the case of the healthy class. This performance will
come in very handy for multi-class disease classification problems, where the
difference between minute variations of medical conditions is the difference between
diagnosis and treatment. The high Fl-score at 97.8% demonstrates how good the
model is in general with performance across multiple evaluation metrics that could be
very well-suited for clinical applications.

While these results are promising, several limitations de- serve discussion. One major
concern here is that the model per- forms relatively worse on minority classes in the
dataset.While the ViT model demonstrated superior performance in general, certain
minority classes exhibited inconsistent classification results, primarily due to the
imbalanced nature of the CCD. This limitation highlights the need for more
sophisticated data augmentation techniques and possibly the implementa- tion of
class-weighted loss functions in future iterations to address these discrepancies.
Ensuring that all classes are well- represented and accurately classified is essential for
real-world applicability, particularly in diverse clinical settings.

Additionally, while the model showed excellent discrimina- tory ability overall, the
slightly lower AUC for cancer classi- fications indicates that there remains room for
improvement. Differentiating early-stage cancer from benign polyps poses a
significant challenge, and this suggests the necessity for larger, more diverse datasets
that encompass a wider array of disease presentations. As such, enhancing the dataset
could improve the model’s robustness and reliability in clinical scenarios, ultimately
leading to better patient outcomes.

Real-world clinical validation is another critical consider- ation that remains to be
addressed. Although our results are compelling, the true test of the model’s efficacy
will occur within clinical environments where variables such as patient demographics,
and varying imaging techniques can impact diagnostic performance. Hence, engaging
in thorough clinical trials is imperative to confirm the model’s utility and to fine- tune
its performance for practical applications.

CONCLUSION & FUTURE WORKS

The research successfully demonstrated the effectiveness of the VitB16-based model
for predicting gastroenterologi- cal diseases, outperforming traditional models such
as SVM and decision trees, as well as more advanced architectures like CNN and
LSTM. The model achieved high accuracy, precision, recall, and F1-scores, indicating
its capability to generalize well across diverse disease types while minimizing false
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positives and negatives. The attention mechanism within the VitB16 model allowed it
to focus on the most critical features, leading to robust performance even on complex
medical datasets, making it an excellent candidate for clini- cal application in disease
prediction and informed decision- making. Additionally, the use of this advanced
approach

aligns with the growing need for diagnostics that can detect subtle anomalies
within medical images and predict patient outcomes effectively. The integration of
multimodal image fusion and clinical data could further address the challenges of
classification and improve clinical interpretability.

Future improvements can focus on increasing the dataset size, particularly for rare
gastroenterological diseases, which would help address the model’s slightly lower
performance on these conditions. Additional data sources such as ge- netic
markers or patient history might be integrated in the model to enhance
discriminatory power,improving detection of subtle anomalies and supporting
explainable Al approaches essential for clinical interpretability and ethical
considerations in diagnostics. More so, enhancement of performance could be
achieved by considering other attention-based models or hybrid architectures. Such
enhancements will not only enhance accuracy but also make the possibility of
deploying the model within a real-world health system, where early and accurate
disease prediction can reduce the effects disease has on patients.
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